Home About us Contact | |||
Improved Discrimination (improved + discrimination)
Selected AbstractsModulatory effects of 5Hz rTMS over the primary somatosensory cortex in focal dystonia,An fMRI-TMS study,MOVEMENT DISORDERS, Issue 1 2010Susanne A. Schneider MD Abstract Dystonia is associated with impaired somatosensory ability. The electrophysiological method of repetitive transcranial magnetic stimulation (rTMS) can be used for noninvasive stimulation of the human cortex and can alter cortical excitability and associated behavior. Among others, rTMS can alter/improve somatosensory discrimation abilities, as shown in healthy controls. We applied 5Hz-rTMS over the left primary somatosensory cortex (S1) in 5 patients with right-sided writer's dystonia and 5 controls. We studied rTMS effects on tactile discrimination accuracy and concomitant rTMS-induced changes in hemodynamic activity measured by functional magnetic resonance imaging (fMRI). Before rTMS, patients performed worse on the discrimination task than controls even though fMRI showed greater task-related activation bilaterally in the basal ganglia (BG). In controls, rTMS led to improved discrimination; fMRI revealed this was associated with increased activity of the stimulated S1, bilateral premotor cortex and BG. In dystonia patients, rTMS had no effect on discrimination; fMRI showed similar cortical effects to controls except for no effects in BG. Improved discrimination after rTMS in controls is linked to enhanced activation of S1 and BG. Failure of rTMS to increase BG activation in dystonia may be associated with the lack of effect on sensory discrimination in this group and may reflect impaired processing in BG-S1 connections. Alternatively, the increased BG activation seen in the baseline state without rTMS may reflect a compensatory strategy that saturates a BG contribution to this task. © 2010 Movement Disorder Society [source] Comparison of spectral fitting methods for overlapping J-coupled metabolite resonancesMAGNETIC RESONANCE IN MEDICINE, Issue 3 2010A. Gonenc Abstract There is increasing interest in the use of two-dimensional J-resolved spectroscopic acquisition (multiecho) methods for in vivo proton magnetic resonance spectroscopy due to the improved discrimination of overlapping J-coupled multiplet resonances that is provided. Of particular interest is the potential for discrimination of the overlapping resonances of glutamate and glutamine. In this study, a new time-domain parametric spectral model that makes use of all available data is described for fitting the complete two-dimensional multiecho data, and the performance of this method was compared with fitting of one-dimensional spectra obtained following averaging multiecho data (echo time-averaged) and single-echo time PRESS (Point Resolved Spectroscopy) acquired spectra. These methods were compared using data obtained from a phantom containing typical brain metabolites and a human brain. Results indicate that improved performance and accuracy is obtained for the two-dimensional acquisition and spectral fitting model. Magn Reson Med, 2010. © 2010 Wiley-Liss, Inc. [source] Spectrum separation resolves partial-volume effect of MRSI as demonstrated on brain tumor scansNMR IN BIOMEDICINE, Issue 10 2008Yuzhuo Su Abstract Magnetic resonance spectroscopic imaging (MRSI) is currently used clinically in conjunction with anatomical MRI to assess the presence and extent of brain tumors and to evaluate treatment response. Unfortunately, the clinical utility of MRSI is limited by significant variability of in vivo spectra. Spectral profiles show increased variability because of partial coverage of large voxel volumes, infiltration of normal brain tissue by tumors, innate tumor heterogeneity, and measurement noise. We address these problems directly by quantifying the abundance (i.e. volume fraction) within a voxel for each tissue type instead of the conventional estimation of metabolite concentrations from spectral resonance peaks. This ,spectrum separation' method uses the non-negative matrix factorization algorithm, which simultaneously decomposes the observed spectra of multiple voxels into abundance distributions and constituent spectra. The accuracy of the estimated abundances is validated on phantom data. The presented results on 20 clinical cases of brain tumor show reduced cross-subject variability. This is reflected in improved discrimination between high-grade and low-grade gliomas, which demonstrates the physiological relevance of the extracted spectra. These results show that the proposed spectral analysis method can improve the effectiveness of MRSI as a diagnostic tool. Copyright © 2008 John Wiley & Sons, Ltd. [source] The Impact of Injury Coding Schemes on Predicting Hospital Mortality After Pediatric InjuryACADEMIC EMERGENCY MEDICINE, Issue 7 2009Randall S. Burd MD Abstract Objectives:, Accurate adjustment for injury severity is needed to evaluate the effectiveness of trauma management. While the choice of injury coding scheme used for modeling affects performance, the impact of combining coding schemes on performance has not been evaluated. The purpose of this study was to use Bayesian logistic regression to develop models predicting hospital mortality in injured children and to compare the performance of models developed using different injury coding schemes. Methods:, Records of children (age < 15 years) admitted after injury were obtained from the National Trauma Data Bank (NTDB) and the National Pediatric Trauma Registry (NPTR) and used to train Bayesian logistic regression models predicting mortality using three injury coding schemes (International Classification of Disease-9th revision [ICD-9] injury codes, the Abbreviated Injury Scale [AIS] severity scores, and the Barell matrix) and their combinations. Model performance was evaluated using independent data from the NTDB and the Kids' Inpatient Database 2003 (KID). Results:, Discrimination was optimal when modeling both ICD-9 and AIS severity codes (area under the receiver operating curve [AUC] = 0.921 [NTDB] and 0.967 [KID], Hosmer-Lemeshow [HL] h-statistic = 115 [NTDB] and 147 [KID]), while calibration was optimal when modeling coding based on the Barell matrix (AUC = 0.882 [NTDB] and 0.936 [KID], HL h-statistic = 19 [NTDB] and 69 [KID]). When compared to models based on ICD-9 codes alone, models that also included AIS severity scores and coding from the Barell matrix showed improved discrimination and calibration. Conclusions:, Mortality models that incorporate additional injury coding schemes perform better than those based on ICD-9 codes alone in the setting of pediatric trauma. Combining injury coding schemes may be an effective approach for improving the predictive performance of empirically derived estimates of injury mortality. [source] Quantitative phase microscopy: A new tool for investigating the structure and function of unstained live cellsCLINICAL AND EXPERIMENTAL PHARMACOLOGY AND PHYSIOLOGY, Issue 12 2004Claire L Curl SUMMARY 1.,The optical transparency of unstained live cell specimens limits the extent to which information can be recovered from bright-field microscopic images because these specimens generally lack visible amplitude-modulating components. However, visualization of the phase modulation that occurs when light traverses these specimens can provide additional information. 2.,Optical phase microscopy and derivatives of this technique, such as differential interference contrast (DIC) and Hoffman modulation contrast (HMC), have been used widely in the study of cellular materials. With these techniques, enhanced contrast is achieved, which is useful in viewing specimens, but does not allow quantitative information to be extracted from the phase content available in the images. 3.,An innovative computational approach to phase microscopy, which provides mathematically derived information about specimen phase-modulating characteristics, has been described recently. Known as quantitative phase microscopy (QPM), this method derives quantitative phase measurements from images captured using a bright-field microscope without phase- or interference-contrast optics. 4.,The phase map generated from the bright-field images by the QPM method can be used to emulate other contrast image modes (including DIC and HMC) for qualitative viewing. Quantitative phase microscopy achieves improved discrimination of cellular detail, which permits more rigorous image analysis procedures to be undertaken compared with conventional optical methods. 5.,The phase map contains information about cell thickness and refractive index and can allow quantification of cellular morphology under experimental conditions. As an example, the proliferative properties of smooth muscle cells have been evaluated using QPM to track growth and confluency of cell cultures. Quantitative phase microscopy has also been used to investigate erythrocyte cell volume and morphology in different osmotic environments. 6.,Quantitative phase microscopy is a valuable, new, non-destructive, non-interventional experimental tool for structural and functional cellular investigations. [source] |