Important Systems (important + system)

Distribution by Scientific Domains


Selected Abstracts


Histamine-1 receptor is not required as a downstream effector of orexin-2 receptor in maintenance of basal sleep/wake states

ACTA PHYSIOLOGICA, Issue 3 2010
M. Hondo
Abstract Aim:, The effect of orexin on wakefulness has been suggested to be largely mediated by activation of histaminergic neurones in the tuberomammillary nucleus (TMN) via orexin receptor-2 (OX2R). However, orexin receptors in other regions of the brain might also play important roles in maintenance of wakefulness. To dissect the role of the histaminergic system as a downstream mediator of the orexin system in the regulation of sleep/wake states without compensation by the orexin receptor-1 (OX1R) mediated pathways, we analysed the phenotype of Histamine-1 receptor (H1R) and OX1R double-deficient (H1R,/,;OX1R,/,) mice. These mice lack OX1R-mediated pathways in addition to deficiency of H1R, which is thought to be the most important system in downstream of OX2R. Methods:, We used H1R deficient (H1R,/,) mice, H1R,/,;OX1R,/, mice, OX1R and OX2R double-deficient (OX1R,/,;OX2R,/,) mice, and wild type controls. Rapid eye movement (REM) sleep, non-REM (NREM) sleep and awake states were determined by polygraphic electroencephalographic/electromyographic recording. Results:, No abnormality in sleep/wake states was observed in H1R,/, mice, consistent with previous studies. H1R,/,;OX1R,/, mice also showed a sleep/wake phenotype comparable to that of wild type mice, while OX1R,/,; OX2R,/, mice showed severe fragmentation of sleep/wake states. Conclusion:, Our observations showed that regulation of the sleep/wake states is completely achieved by OX2R-expressing neurones without involving H1R-mediated pathways. The maintenance of basal physiological sleep/wake states is fully achieved without both H1 and OX1 receptors. Downstream pathways of OX2R other than the histaminergic system might play an important role in the maintenance of sleep/wake states. [source]


The Influence of Mass Transfer on a Porous Fuel Cell Electrode

FUEL CELLS, Issue 1-2 2004
Y.-P. Sun
Abstract A one-dimensional model for a porous fuel cell electrode using a liquid electrolyte with dissolved reactant is presented. The model consists of a Poisson, second-order ordinary differential equation, describing the effect of the electric field and a one-dimensional; Fickian diffusion, second-order ordinary differential equation describing the concentration variation associated with diffusion. The model accounts for mass transport and heterogeneous electrochemical reaction. The solution of this model is by the approximate Adomian polynomial method and is used to determine lateral distributions of concentration, overpotential and current density and overall cell polarisation. The model is used to simulate the effects of important system and operating parameters, i.e. local diffusion rates, and mass transport coefficients and electrode polarisation behaviour. [source]


Expression of Lymphatic Markers During Avian and Mouse Cardiogenesis

THE ANATOMICAL RECORD : ADVANCES IN INTEGRATIVE ANATOMY AND EVOLUTIONARY BIOLOGY, Issue 2 2010
Ganga Karunamuni
Abstract The adult heart has been reported to have an extensive lymphatic system, yet the development of this important system during cardiogenesis is still largely unexplored. The nuclear-localized transcription factor Prox-1 identified a sheet of Prox-1-positive cells on the developing aorta and pulmonary trunk in avian and murine embryos just before septation of the four heart chambers. The cells coalesced into a branching lymphatic network that spread within the epicardium to cover the heart. These vessels eventually expressed the lymphatic markers LYVE-1, VEGFR-3, and podoplanin. Before the Prox-1-positive cells were detected in the mouse epicardium, LYVE-1, a homologue of the CD44 glycoprotein, was primarily expressed in individual epicardial cells. Similar staining patterns were observed for CD44 in avian embryos. The proximity of these LYVE-1/CD44-positive mesenchymal cells to Prox-1-positive vessels suggests that they may become incorporated into the lymphatics. Unexpectedly, we detected LYVE-1/PECAM/VEGFR-3-positive vessels within the embryonic and adult myocardium, which remained Prox-1/podoplanin-negative. Lymphatic markers were surprisingly found in adult rat and embryonic mouse epicardial cell lines, with Prox-1 also exhibiting nuclear-localized expression in primary cultures of embryonic avian epicardial cells. Our data identified three types of cells in the embryonic heart expressing lymphatic markers: (1) Prox-1-positive cells from an extracardiac source that migrate within the serosa of the outflow tract into the epicardium of the developing heart, (2) individual LYVE-1-positive cells in the epicardium that may be incorporated into the Prox-1-positive lymphatic vasculature, and (3) LYVE-1-positive cells/vessels in the myocardium that do not become Prox-1-positive even in the adult heart. Anat Rec, 2010. © 2009 Wiley-Liss, Inc. [source]


Access to Any Site-Directed Isotopomer of Methionine, Selenomethionine, Cysteine, and Selenocysteine , Use of Simple, Efficient Modular Synthetic Reaction Schemes for Isotope Incorporation

EUROPEAN JOURNAL OF ORGANIC CHEMISTRY, Issue 13 2004
Arjan H. G. Siebum
Abstract Simple modular reaction schemes that allow access to any isotopomer of protected serine and homoserine have been worked out. These systems could be simply converted into cysteine, selenocysteine, homocysteine, homoselenocysteine, the essential amino acid methionine, and selenomethionine by Mitsunobu chemistry. These sulfur- and selenium-containing amino acids fulfil many essential roles in the living organism. In addition, homoserine could be converted in a few steps into optically active L -vinylglycine. As well as the stable isotopes 13C, 15N, 17O, and 18O, the radioactive isotopes of sulfur, selenium and carbon can also be easily introduced in a site-directed fashion. In view of the wide scope of the Mitsunobu reaction, we feel that many more important systems with the carbon skeleton of serine and homoserine should be preparable through this basic chemistry in any site-directed isotopically labeled form. (© Wiley-VCH Verlag GmbH & Co. KGaA, 69451 Weinheim, Germany, 2004) [source]


Enzyme-Responsive Nanoparticle Systems,

ADVANCED MATERIALS, Issue 22 2008
James E. Ghadiali
Abstract Inorganic nanoparticles and their accompanying diverse physical properties are now virtually in routine use as imaging tools in cell-biology. In addition to serving as excellent contrast agents, their size- and environment-dependent optical and magnetic properties can be harnessed to create enzyme biosensor devices of extremely high sensitivity, whilst circumventing the numerous technical limitations associated with traditional enzyme assays. In this Research News article we discuss recent advances in field of enzyme-responsive nanoparticle systems, where the activity of an enzyme elicits a specific response in the nanoparticle assembly to produce a signal relating to enzyme activity, focusing on three important systems: DNA-structured nanoparticles, protein kinases and proteases. [source]


Anatomical Markers of Activity in Neuroendocrine Systems: Are we all ,Fos-ed out'?

JOURNAL OF NEUROENDOCRINOLOGY, Issue 4 2002
G. E. Hoffman
Abstract It has now been nearly 15 years since the immediate early gene, c -fos, and its protein product, Fos, were introduced as tools for determining activity changes within neurones of the nervous system. In the ensuing years, this approach was applied to neuroendocrine study with success. With it have come advances in our understanding of which neuroendocrine neurones respond to various stimuli and how other central nervous system components interact with neuroendocrine neurones. Use of combined tract-tracing approaches, as well as double-labelling for Fos and transmitter markers, have added to characterization of neuroendocrine circuits. The delineation of the signal transduction cascades that induce Fos expression has led to establishment of the relationship between neurone firing and Fos expression. Importantly, we can now appreciate that Fos expression is often, but not always, associated with increased neuronal firing and vice versa. There are remaining gaps in our understanding of Fos in the nervous system. To date, knowledge of what Fos does after it is expressed is still limited. The transience of Fos expression after stimulation (especially if the stimulus is persistent) complicates design of experiments to assess the function of Fos and makes Fos of little value as a marker for long-term changes in neurone activity. In this regard, alternative approaches must be sought. Useful alternative approaches employed to date to monitor neuronal changes in activity include examination of (i) signal transduction intermediates (e.g. phosphorylated CREB); (ii) transcriptional/translational intermediates (e.g. heteronuclear RNA, messenger RNA (mRNA), prohormones); and (iii) receptor translocation. Another capitalizes on the fact that many neuroendocrine systems show striking stimulus-transcription coupling in the regulation of their transmitter or its synthetic enzymes. Together, as we move into the 21st Century, the use of multiple approaches to study activity within neuroendocrine systems will further our understanding of these important systems. [source]


The endocannabinoid system in brain reward processes

BRITISH JOURNAL OF PHARMACOLOGY, Issue 2 2008
M Solinas
Food, drugs and brain stimulation can serve as strong rewarding stimuli and are all believed to activate common brain circuits that evolved in mammals to favour fitness and survival. For decades, endogenous dopaminergic and opioid systems have been considered the most important systems in mediating brain reward processes. Recent evidence suggests that the endogenous cannabinoid (endocannabinoid) system also has an important role in signalling of rewarding events. First, CB1 receptors are found in brain areas involved in reward processes, such as the dopaminergic mesolimbic system. Second, activation of CB1 receptors by plant-derived, synthetic or endogenous CB1 receptor agonists stimulates dopaminergic neurotransmission, produces rewarding effects and increases rewarding effects of abused drugs and food. Third, pharmacological or genetic blockade of CB1 receptors prevents activation of dopaminergic neurotransmission by several addictive drugs and reduces rewarding effects of food and these drugs. Fourth, brain levels of the endocannabinoids anandamide and 2-arachidonoylglycerol are altered by activation of reward processes. However, the intrinsic activity of the endocannabinoid system does not appear to play a facilitatory role in brain stimulation reward and some evidence suggests it may even oppose it. The influence of the endocannabinoid system on brain reward processes may depend on the degree of activation of the different brain areas involved and might represent a mechanism for fine-tuning dopaminergic activity. Although involvement of the various components of the endocannabinoid system may differ depending on the type of rewarding event investigated, this system appears to play a major role in modulating reward processes. British Journal of Pharmacology (2008) 154, 369,383; doi:10.1038/bjp.2008.130; published online 14 April 2008 [source]