Home About us Contact | |||
Important Regulatory Role (important + regulatory_role)
Selected AbstractsOrexins (hypocretins) actions on the GHRH/somatostatin-GH axisACTA PHYSIOLOGICA, Issue 3 2010M. López Abstract The secretion of growth hormone (GH) is regulated through a complex neuroendocrine control system that includes two major hypothalamic regulators, namely GH-releasing hormone (GHRH) and somatostatin (SST) that stimulate and inhibit, respectively, GH release. Classical experiments involving damage and electrical stimulation suggested that the lateral hypothalamic area (LHA) modulated the somatotropic axis, but the responsible molecular mechanisms were unclear. Evidence obtained during the last decade has demonstrated that orexins/hypocretins, a family of peptides expressed in the LHA controlling feeding and sleep, play an important regulatory role on GH, by inhibiting its secretion modulating GHRH and SST neurones. Considering that GH release is closely linked to the sleep,wake cycle and feeding state, understanding orexin/hypocretin physiology could open new therapeutic possibilities in the treatment of sleep, energy homeostasis and GH-related pathologies, such as GH deficiency. [source] Rearing environment and hypothalamic-pituitary-adrenal regulation in young rhesus monkeys (Macaca mulatta)DEVELOPMENTAL PSYCHOBIOLOGY, Issue 4 2005John P. Capitanio Abstract A mammal's early social environment has important regulatory effects on its behavior and physiology, and this is especially true for regulation of the hypothalamic-pituitary-adrenal (HPA) system. The present study was designed to test hypotheses that various aspects of the social environment are important influences on HPA regulation. Seven hundred seventy eight, 3- to 4-month-old rhesus monkeys were studied as part of a standardized, 24-hr biobehavioral assessment program, which included blood sampling to determine plasma cortisol concentrations. Results indicate that nursery-rearing results in a reduced cortisol set-point for the HPA system, and, for nursery-reared (NR) animals, more peer exposure during infancy is associated with a higher set-point. Age and sex differences during this period were evident but small in magnitude. These data demonstrate the important regulatory role of the social environment on nonhuman primate physiology and suggest caution in assuming that differences between individuals' cortisol levels reflect only differences in perceptions of the "stressfulness" of events. © 2005 Wiley Periodicals, Inc. Dev Psychobiol 46:318,330, 2005. [source] Neutropenia alters lung cytokine production in mice and reduces their susceptibility to pulmonary cryptococcosisEUROPEAN JOURNAL OF IMMUNOLOGY, Issue 6 2003Abstract Neutrophils are generally considered to contribute to host defense through their potent microbicidal activity. However, there is accumulating evidence that neutrophils also have an important regulatory role in establishing the balance of Th1 and Th2 responses. This study investigated the role of neutrophils in defense against pulmonary Cryptococcus neoformans infection using neutrophil-depleted BALB/c mice generated by administering mAb RB6,8C5. Neutropenic mice with pulmonary infection survived significantly longer than control mice, but there was no difference between groups infected intravenously. On day,1 of infection, neutropenic mice had significantly smaller fungal burdens than control mice. On day,7, neutropenic mice had significantly higher lung concentrations of IL-10, TNF-,, IL-4, and IL-12 than control mice, but there was no difference in IFN-, and MCP-1 levels. Neutrophils influenced the outcome of cryptococcal infection in mice through mechanisms that did not involve a reduction in early fungal burden. The absence of neutrophils in lung tissue during the initial stages of infection appeared to alter the inflammatory response in a manner thatwas subsequently beneficial to the host. Higher levels of Th1- and Th2-associated cytokines in neutropenic mice could have simultaneously promoted a strong cellular response while reducing inflammatory damage to the lung. Our results support the emerging concept that neutrophils play an important function in modulating the development of the immune response. [source] Calcium dynamics are altered in cortical neurons lacking the calmodulin-binding protein RC3EUROPEAN JOURNAL OF NEUROSCIENCE, Issue 1 2003Jacqueline J. W. Van Dalen Abstract RC3 is a neuronal calmodulin-binding protein and protein kinase C substrate that is thought to play an important regulatory role in synaptic transmission and neuronal plasticity. Two molecules known to regulate synaptic transmission and neuronal plasticity are Ca2+ and calmodulin, and proposed mechanisms of RC3 action involve both molecules. However, physiological evidence for a role of RC3 in neuronal Ca2+ dynamics is limited. In the current study we utilized cultured cortical neurons obtained from RC3 knockout (RC3,/,) and wildtype mice (RC3+/+) and fura-2-based microscopic Ca2+ imaging to investigate a role for RC3 in neuronal Ca2+ dynamics. Immunocytochemical characterization showed that the RC3,/, cultures lack RC3 immunoreactivity, whereas cultures prepared from wildtype mice showed RC3 immunoreactivity at all ages studied. RC3+/+ and RC3,/, cultures were indistinguishable with respect to neuron density, neuronal morphology, the formation of extensive neuritic networks and the presence of glial fibrillary acidic protein (GFAP)-positive astrocytes and ,-aminobutyric acid (GABA)ergic neurons. However, the absence of RC3 in the RC3,/, neurons was found to alter neuronal Ca2+ dynamics including baseline Ca2+ levels measured under normal physiological conditions or after blockade of synaptic transmission, spontaneous intracellular Ca2+ oscillations generated by network synaptic activity, and Ca2+ responses elicited by exogenous application of N-methyl- d -aspartate (NMDA) or class I metabotropic glutamate receptor agonists. Thus, significant changes in Ca2+ dynamics occur in cortical neurons when RC3 is absent and these changes do not involve changes in gross neuronal morphology or neuronal maturation. These data provide direct physiological evidence for a regulatory role of RC3 in neuronal Ca2+ dynamics. [source] Bone morphogenetic protein-7 enhances dendritic growth and receptivity to innervation in cultured hippocampal neuronsEUROPEAN JOURNAL OF NEUROSCIENCE, Issue 1 2000G. S. Withers Abstract Members of the bone morphogenetic protein (BMP) family of growth factors are present in the central nervous system during development and throughout life. They are known to play an important regulatory role in cell differentiation, but their function in postmitotic telencephalic neurons has not been investigated. To address this question, we examined cultured hippocampal neurons following treatment with bone morphogenetic protein-7 (BMP-7, also referred to as osteogenic protein-1). When added at the time of plating, BMP-7 markedly stimulated the rate of dendritic development. Within 1 day, the dendritic length of BMP-7-treated neurons was more than twice that of controls. By three days the dendritic arbors of BMP-7-treated neurons had attained a level of branching similar to that of 2-week-old neurons cultured under standard conditions. Several findings indicate that BMP-7 selectively enhances dendritic development. While dendritic length was significantly increased in BMP-7-treated neurons, the length of the axon was not. In addition, the mRNA encoding the dendritic protein MAP2 was significantly increased by BMP-7 treatment, but the mRNA for tubulin was not. Finally, BMP-7 did not enhance cell survival. Because dendritic maturation is a rate-limiting step in synapse formation in hippocampal cultures, we examined whether BMP-7 accelerated the rate at which neurons became receptive to innervation. Using two separate experimental paradigms, we found that the rate of synapse formation (assessed by counting synapsin I-positive presynaptic vesicle clusters) was increased significantly in neurons that had been exposed previously to BMP-7. Because BMP-7 and related BMPs are expressed in the hippocampus in situ, these factors may play a role in regulating dendritic branching and synapse formation in both development and plasticity. [source] G protein-coupled receptor 84, a microglia-associated protein expressed in neuroinflammatory conditionsGLIA, Issue 8 2007Caroline Bouchard Abstract G protein-coupled receptor 84 (GPR84) is a recently discovered member of the seven transmembrane receptor superfamily whose function and regulation are unknown. Here, we report that in mice suffering from endotoxemia, microglia express GPR84 in a strong and sustained manner. This property is shared by subpopulations of peripheral macrophages and, to a much lesser extent, monocytes. The induction of GPR84 expression by endotoxin is mediated, at least in part, by proinflammatory cytokines, notably tumor necrosis factor (TNF) and interleukin-1 (IL-1), because mice lacking either one or both of these molecules have fewer GPR84-expressing cells in their cerebral cortex than wild-type mice during the early phase of endotoxemia. Moreover, when injected intracerebrally or added to microglial cultures, recombinant TNF stimulates GPR84 expression through a dexamethasone-insensitive mechanism. Finally, we show that microglia produce GPR84 not only during endotoxemia, but also during experimental autoimmune encephalomyelitis (EAE), a model of multiple sclerosis. In conclusion, this study reports the identification of a new sensitive marker of microglial activation, which may play an important regulatory role in neuroimmunological processes, acting downstream to the effects of proinflammatory mediators. © 2007 Wiley-Liss, Inc. [source] Identifying the Relative Contributions of Rac1 and Rac2 to Osteoclastogenesis,,JOURNAL OF BONE AND MINERAL RESEARCH, Issue 2 2008Yongqiang Wang Abstract Rac small GTPases may play an important regulatory role in osteoclastogenesis. Our in vitro and in vivo results show that both Rac1 and Rac2 are required for optimal osteoclast differentiation, but Rac1 is more critical. Rac1 is the key Rac isoform responsible for regulating ROS generation and the actin cytoskeleton during the multiple stages of osteoclast differentiation. Introduction: Recent evidence suggests that the Rac small GTPases may play an important regulatory role in osteoclastogenesis. This finding is important because bisphosphonates may regulate their antiresorptive/antiosteoclast effects through the modification of Rho family of small GTPases. Materials and Methods: To elucidate the specific roles of the Rac1 and Rac2 isoforms during osteoclastogenesis, we used mice deficient in Rac1, Rac2, or both Rac1 and Rac2 in monocyte/osteoclast precursors. Macrophage-colony stimulating factor (M-CSF), and RANKL-mediated osteoclastogenesis in vitro was studied by using bone marrow-derived mononucleated preosteoclast precursors (MOPs). The expression of osteoclast-specific markers was examined using quantitative real-time PCR and Western blot analysis. Free actin barbed ends in bone marrow MOPs after M-CSF stimulation was determined. The ability of MOPs to migrate toward M-CSF was assayed using Boyden chambers. Margin spreading on heparin sulfate-coated glass and RANKL-induced reactive oxygen species generation were also performed. Functional assays of in vitro-generated osteoclasts were ascertained using dentine sections from narwal tusks. Osteoclast levels in vivo were counted in TRACP and immunohistochemically stained distal tibial sections. In vivo microarchitexture of lumbar vertebrate was examined using ,CT 3D imaging and analysis. Results: We show here that, although both Rac isoforms are required for normal osteoclast differentiation, Rac1 deletion results in a more profound reduction in osteoclast formation in vitro because of its regulatory role in pre-osteoclast M-CSF-mediated chemotaxis and actin assembly and RANKL-mediated reactive oxygen species generation. This Rac1 cellular defect also manifests at the tissue level with increased trabecular bone volume and trabeculae number compared with wildtype and Rac2-null mice. This unique mouse model has shown for the first time that Rac1 and Rac2 play different and nonoverlapping roles during osteoclastogenesis and will be useful for identifying the key roles played by these two proteins during the multiple stages of osteoclast differentiation. Conclusions: Rac1 and Rac2 play different and nonoverlapping roles during osteoclastogenesis. This model showed that Rac1 is the key Rac isoform responsible for regulating ROS generation and the actin cytoskeleton during the multiple stages of osteoclast differentiation. [source] Osteoblastic Tartrate-Resistant Acid Phosphatase: Its Potential Role in the Molecular Mechanism of Osteogenic Action of Fluoride,JOURNAL OF BONE AND MINERAL RESEARCH, Issue 10 2003K-H William Lau Abstract Although type 5 TRACP is recognized as a histochemical and biochemical marker of osteoclasts, there is evidence that bone forming cells, osteoblasts, and osteocytes also express a type 5 TRACP. Accordingly, an osteoblastic type 5 TRACP has been purified from human osteoblasts and from bovine cortical bone matrices. Comparison of biochemical properties of osteoblastic type 5 TRACP with those of osteoclastic type 5 TRACP suggests that osteoblastic type 5 TRACP is a different isoenzyme from osteoclastic type 5 TRACP. Two properties of osteoblastic type 5 TRACP may be relevant to its physiological functions: (1) it acts as a protein-tyrosine phosphatase (protein tyrosine phosphorylation) under physiologically relevant conditions, and (2) it is sensitive to inhibition by clinically relevant concentrations of fluoride. Because fluoride is a stimulator of osteoblastic proliferation and differentiation and a potent osteogenic agent and because protein tyrosine phosphorylation plays an important regulatory role in cell proliferation and differentiation, these unique properties and other evidence summarized in this review led to the proposal that the osteogenic action of fluoride is mediated, at least in part, by the fluoride-mediated inhibition of osteoblastic type 5 TRACP/protein tyrosine phosphorylation, which leads to a stimulation of osteoblast proliferation and differentiation, and subsequently, an increase in bone formation. [source] Crosstalk between Hsp70 molecular chaperone, lysosomes and proteasomes in autophagy-mediated proteolysis in human retinal pigment epithelial cellsJOURNAL OF CELLULAR AND MOLECULAR MEDICINE, Issue 9b 2009Tuomas Ryhänen Abstract The pathogenesis of age-related macular degeneration involves chronic oxidative stress, impaired degradation of membranous discs shed from photoreceptor outer segments and accumulation of lysosomal lipofuscin in retinal pigment epithelial (RPE) cells. It has been estimated that a major part of cellular proteolysis occurs in proteasomes, but the importance of proteasomes and the other proteolytic pathways including autophagy in RPE cells is poorly understood. Prior to proteolysis, heat shock proteins (Hsps), agents that function as molecular chaperones, attempt to refold misfolded proteins and thus prevent the accumulation of cytoplasmic protein aggregates. In the present study, the roles of the Hsp70 molecular chaperone and proteasomal and lysosomal proteolytic pathways were evaluated in human RPE cells (ARPE-19). The Hsp70 and ubiquitin protein levels and localization were analysed by Western blotting and immunofluorescense. Confocal and transmission electron microscopy were used to detect cellular organelles and to evaluate the morphological changes. Hsp70 levels were modulated using RNA interference and overexpression techniques. Cell viability was measured by colorimetric assay. The proteasome inhibitor MG-132 evoked the accumulation of perinuclear aggregates positive for Hsp70, ubiquitin-protein conjugates and the lysosomal membrane protein LAMP-2. Interestingly, the hsp70 mRNA depletion significantly increased cell death in conjunction with proteasome inhibition. We found that the accumulation of lysosomes was reversible: a cessation of proteasome inhibition led to clearance of the deposits via a mechanism believed to include autophagy. The molecular chaperone Hsp70, proteasomes and autophagy have an important regulatory role in the protein turnover of human RPE cells and may thus open new avenues for understanding degenerative processes in retinal cells. [source] Increased Galanin Synapses onto Activated Gonadotropin-Releasing Hormone Neuronal Cell Bodies in Normal Female Mice and in Functional Preoptic Area Grafts in Hypogonadal MiceJOURNAL OF NEUROENDOCRINOLOGY, Issue 6 2002G. Rajendren Abstract Galanin synaptic input onto gonadotropin-releasing hormone (GnRH) neuronal cell bodies was analysed in female mice using the presynaptic vesicle-specific protein, synaptophysin (Syn) as a marker. In the first experiment, forebrain sections from normal ovariectomized ovarian steroid-primed mice exhibiting a surge of luteinizing hormone were processed for immunohistochemical labelling for GnRH, synaptophysin, galanin and Fos. Two representative sections from each brain, one passing through the anterior septum (anterior section) and the other through the organum vasculosum lamina terminalis-preoptic area (posterior section), were analysed under the confocal microscope. None of the GnRH cells analysed in the anterior sections were Fos immunoreactive (IR) or received input from galanin-IR fibres. In contrast, the majority of GnRH cells in the posterior sections analysed were Fos-positive. The number of galanin synapses onto the Fos-positive GnRH cells was significantly higher than that in the Fos-negative cells in this area of the brain, even though the number of Syn-IR appositions was comparable to each other. Transplantation of preoptic area (POA) into the third cerebral ventricle of hypogonadal (HPG) mice corrects deficits in the reproductive system. In the second experiment, synaptic input to GnRH cells was compared between HPG/POA mice with (functional graft) or without (nonfunctional graft) gonadal development. The mean numbers of Syn-IR appositions and galanin synapses per GnRH cell and the proportion of GnRH cells with galanin input were significantly higher in the functional than in the nonfunctional grafts. The results suggest that galanin can act directly on the GnRH cell bodies and may have an important regulatory role on the GnRH system. [source] O-linked ,-N-acetylglucosaminylation in mouse embryonic neural precursor cellsJOURNAL OF NEUROSCIENCE RESEARCH, Issue 16 2009Makoto Yanagisawa Abstract In neural stem cells (NSCs), glycoconjugates and carbohydrate antigens are known not only to serve as excellent cell surface biomarkers for cellular differentiation and development but also to play important functional roles in determining cell fate. O-linked ,-N-acetylglucosamine (O-GlcNAc), which modifies nuclear and cytoplasmic proteins on the serine and threonine residues, is also expected to play an important regulatory role. It is not known, however, whether O-GlcNAc is expressed in NSCs or what the function of this expression is. In this study, we evaluated the patterns and possible functions of O-GlcNAcylation in mouse embryonic neuroepithelial cells (NECs), which are known to be rich in NSCs. We confirmed the expression of O-GlcNAc transferase, O-GlcNAcase, and several O-GlcNAcylated proteins in NECs. Treatment of NECs with O-GlcNAcase inhibitors, PUGNAc and streptozotocin, induced robust accumulation of O-GlcNAc in NECs and reduction of number of NECs. In O-GlcNAcase inhibitor-treated NECs, the Ras-mitogen-activated protein kinase pathway and the phosphatidylinositol 3-kinase-Akt pathway, important for proliferation and survival, respectively, were intact, but caspase-3, an executioner for cell death, was activated. These results suggest the possibility that O-GlcNAc is involved in cell death signaling in NECs. Furthermore, in NECs, we identified an O-GlcNAc-modified protein, Sp1 transcription factor. Our study is the first to evaluate expression and functions of O-GlcNAc in NECs. © 2009 Wiley-Liss, Inc. [source] The molecular basis of factor V and VIII procofactor activationJOURNAL OF THROMBOSIS AND HAEMOSTASIS, Issue 12 2009R. M. CAMIRE Summary., Activation of precursor proteins by specific and limited proteolysis is a hallmark of the hemostatic process. The homologous coagulation factors (F)V and FVIII circulate in an inactive, quiescent state in blood. In this so-called procofactor state, these proteins have little, if any procoagulant activity and do not participate to any significant degree in their respective macromolecular enzymatic complexes. Thrombin is considered a key physiological activator, cleaving select peptide bonds in FV and FVIII which ultimately leads to appropriate structural changes that impart cofactor function. As the active cofactors (FVa and FVIIIa) have an enormous impact on thrombin and FXa generation, maintaining FV and FVIII as inactive procofactors undoubtedly plays an important regulatory role that has likely evolved to maintain normal hemostasis. Over the past three decades there has been widespread interest in studying the proteolytic events that lead to the activation of these proteins. While a great deal has been learned, mechanistic explanations as to how bond cleavage facilitates conversion to the active cofactor species remain incompletely understood. However, recent advances have been made detailing how thrombin recognizes FV and FVIII and also how the FV B-domain plays a dominant role in maintaining the procofactor state. Here we review our current understanding of the molecular process of procofactor activation with a particular emphasis on FV. [source] Telomere resolution by Borrelia burgdorferi ResT through the collaborative efforts of tethered DNA binding domainsMOLECULAR MICROBIOLOGY, Issue 3 2007Yvonne Tourand Summary Borrelia burgdorferi, a causative agent of Lyme disease, has a highly unusual segmented genome composed of both circular molecules and linear DNA replicons terminated by covalently closed hairpin ends or telomeres. Replication intermediates of the linear molecules are processed into hairpin telomeres via the activity of ResT, a telomere resolvase. We report here the results of limited proteolysis and mass spectroscopy to identify two main structural domains in ResT, separated by a chymotrypsin cleavage site between residues 163 and 164 of the 449 amino acid protein. The two domains have been overexpressed and purified. DNA electrophoretic mobility shift assays revealed that the C-terminal domain (ResT164,449) displays sequence-specific DNA binding to the box 3,4,5 region of the telomere, while the N-terminal domain (ResT1,163) exhibits sequence-independent DNA binding activity. Further analysis by DNase I footprinting supports a model for telomere resolution in which the hairpin binding module of the N-terminal domain is delivered to the box 1,2 region of the telomere through its tethering to ResT164,449. Conversely, ResT1,164 may play an important regulatory role by modulating both sequence-specific DNA binding activity and catalysis by the C-terminal domain. [source] Inactivation of MAPK affects centrosome assembly, but not actin filament assembly, in mouse oocytes maturing in vitroMOLECULAR REPRODUCTION & DEVELOPMENT, Issue 7 2007Seung-Eun Lee Abstract Mitogen-activated protein kinase (MAPK) plays a crucial role in meiotic maturation of mouse oocytes. In order to understand the mechanism by which MAPK regulates meiotic maturation, we examined the effects of the MAPK pathway inhibitor U0126 on microtubule organization, ,-tubulin and nuclear mitotic apparatus protein (NuMA) distribution, and actin filament assembly in mouse oocytes maturing in vitro. Western blotting with antibodies that detect active, phosphorylated MAPK revealed that MAPK was inactive in fully grown germinal vesicle (GV) oocytes. Phosphorylated MAPK was first detected 3 hr after the initiation of maturation cultures, was fully active at 6 hr, and remained active until metaphase II. Treatment of GV stage oocytes with 20 µM U0126 completely blocked MAPK phosphorylation, but did not affect GV breakdown (GVBD). However, the oocytes did not progress to the Metaphase I stage, which would normally occur after 9 hr in the maturation cultures. The inhibition of MAPK resulted in abnormal spindles and abnormal distributions of ,-tubulin and NuMA, but did not affect actin filament assembly. In oocytes treated with U0126 after GVBD, polar body extrusion was normal, but the organization of the metaphase plate and chromosome segregation were abnormal. In conclusion, the meiotic abnormalities caused by U0126, a specific inhibitor of MAPK signaling, indicate that MAPK plays an important regulatory role in microtubule and centrosome assembly, but not actin filament assembly. Mol. Reprod. Dev. © 2006 Wiley-Liss, Inc. Mol. Reprod. Dev. 74: 904,911, 2007. © 2007 Wiley-Liss, Inc. [source] Profiling microRNA expression in bovine articular cartilage and implications for mechanotransductionARTHRITIS & RHEUMATISM, Issue 8 2009Walter Dunn Objective Articular cartilage is an avascular tissue with precise polarity and organization comprising 3 distinct functional zones: the surface, middle, and deep zones. Each zone has a different gene expression pattern that plays a specific role in articular cartilage development and maintenance. MicroRNA (miRNA) are small noncoding gene products that play an important regulatory role in determining cell differentiation and function. The purpose of this study was to test our hypothesis that miRNA expression profiles in the different articular cartilage zones as well as between regions subjected to different levels of weight-bearing stresses are unique. Methods Using an miRNA microarray approach in conjunction with quantitative reverse transcription,polymerase chain reaction, we identified miRNA in bovine articular cartilage that were differentially expressed in the different functional zones and in the anterior weight-bearing and posterior non,weight-bearing regions of the medial femoral condyle (M1 and M4, respectively). Results We identified miRNA-221 and miR-222 as part of a subset of differentially expressed miRNA that were up-regulated in articular cartilage in the anterior, M1, greater weight-bearing location. Additionally, miR-126, miR-145, and miR-335 were down-regulated in monolayers of tissue-cultured chondrocytes as compared with levels determined directly from intact native cartilage. Conclusion In conclusion, miR-222 expression patterns in articular cartilage are higher in the weight-bearing anterior medial condyle as compared with the posterior non,weight-bearing medial condyle. Thus, miR-222 might be a potential regulator of an articular cartilage mechanotransduction pathway. These data implicate miRNA in the maintenance of articular cartilage homeostasis and are therefore targets for articular cartilage tissue engineering and regenerative medicine. [source] Remodelling of the Escherichia coli outer membrane by two small regulatory RNAsMOLECULAR MICROBIOLOGY, Issue 1 2006Maude Guillier Summary Small non-coding RNAs that play important regulatory roles exist in numerous organisms. In Escherichia coli, about 60 small RNAs have been found and those that have been studied are involved in the response and adaptation to different stresses. RygA and RygB, two of these small RNAs, were identified on the basis of their conservation between different species and their ability to bind Hfq. They are adjacent on the chromosome and have sequence similarity at their 5, and 3, ends but distinct central regions, suggesting that they could regulate the expression of both common and distinct genes. A screen using a multicopy E. coli library led to identification of the response regulator OmpR and its associated sensor kinase EnvZ as positive regulators of rygA and rygB transcription. Therefore, RygA and RygB were renamed OmrA and OmrB respectively (for OmpR- regulated sRNAs A and B). When expressed at high levels, OmrA and OmrB RNAs negatively regulate the expression of several genes encoding multiple outer membrane proteins, including cirA, fecA, fepA and ompT. Taken together, these data suggest that OmrA and OmrB participate in the regulation of outer membrane composition in response to environmental conditions. [source] Molecular Analysis of Brassinosteroid ActionPLANT BIOLOGY, Issue 3 2006C. Müssig Abstract: Brassinosteroids (BRs) are steroidal plant hormones with important regulatory roles in various physiological processes, including growth, xylem differentiation, disease resistance, and stress tolerance. Several components of the BR signal transduction pathway have been identified. The extracellular domains of receptor kinases such as BRI1 perceive BRs and transduce the signal via intracellular kinase domains. Within the cell further kinases and phosphatases determine the phosphorylation status of transcription factors such as BES1 and BZR1. These factors mediate major BR effects. Studies of BR-regulated genes shed light on the molecular mode of BR action. Genes encoding cell-wall-modifying enzymes, enzymes of the BR biosynthetic pathway, transcription factors, and proteins involved in primary and secondary metabolism are subject to BR-regulation. Gene expression data also point at interactions with other phytohormones and a role of BR in stress responses. This article gives a survey of the BR-signaling pathway. Two BR-responsive genes, OPR3 and EXO, are described in detail. [source] Gene deletion of either interleukin-1,, interleukin-1,,converting enzyme, inducible nitric oxide synthase, or stromelysin 1 accelerates the development of knee osteoarthritis in mice after surgical transection of the medial collateral ligament and partial medial meniscectomyARTHRITIS & RHEUMATISM, Issue 12 2003Kristen M. Clements Objective To investigate the development of osteoarthritis (OA) after transection of the medial collateral ligament and partial medial meniscectomy in mice in which genes encoding either interleukin-1, (IL-1,), IL-1,,converting enzyme (ICE), stromelysin 1, or inducible nitric oxide synthase (iNOS) were deleted. Methods Sectioning of the medial collateral ligament and partial medial meniscectomy were performed on right knee joints of wild-type and knockout mice. Left joints served as unoperated controls. Serial histologic sections were obtained from throughout the whole joint of both knees 4 days or 1, 2, 3, or 4 weeks after surgery. Sections were graded for OA lesions on a scale of 0,6 and were assessed for breakdown of tibial cartilage matrix proteoglycan (aggrecan) and type II collagen by matrix metalloproteinases (MMPs) and aggrecanases with immunohistochemistry studies using anti-VDIPEN, anti-NITEGE, and Col2-3/4Cshort neoepitope antibodies. Proteoglycan depletion was assessed by Alcian blue staining and chondrocyte cell death, with the TUNEL technique. Results All knockout mice showed accelerated development of OA lesions in the medial tibial cartilage after surgery, compared with wild-type mice. ICE-, iNOS-, and particularly IL-1,,knockout mice developed OA lesions in the lateral cartilage of unoperated limbs. Development of focal histopathologic lesions was accompanied by increased levels of MMP-, aggrecanase-, and collagenase-generated cleavage neoepitopes in areas around lesions, while nonlesional areas showed no change in immunostaining. Extensive cell death was also detected by TUNEL staining in focal areas around lesions. Conclusion We postulate that deletion of each of these genes, which encode molecules capable of producing degenerative changes in cartilage, leads to changes in the homeostatic controls regulating the balance between anabolism and catabolism, favoring accelerated cartilage degeneration. These observations suggest that these genes may play important regulatory roles in maintaining normal homeostasis in articular cartilage matrix turnover. [source] |