Important Properties (important + property)

Distribution by Scientific Domains


Selected Abstracts


A G space theory and a weakened weak (W2) form for a unified formulation of compatible and incompatible methods: Part I theory

INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, Issue 9 2010
G. R. Liu
Abstract This paper introduces a G space theory and a weakened weak form (W2) using the generalized gradient smoothing technique for a unified formulation of a wide class of compatible and incompatible methods. The W2 formulation works for both finite element method settings and mesh-free settings, and W2 models can have special properties including softened behavior, upper bounds and ultra accuracy. Part I of this paper focuses on the theory and fundamentals for W2 formulations. A normed G space is first defined to include both continuous and discontinuous functions allowing the use of much more types of methods/techniques to create shape functions for numerical models. Important properties and a set of useful inequalities for G spaces are then proven in the theory and analyzed in detail. These properties ensure that a numerical method developed based on the W2 formulation will be spatially stable and convergent to the exact solutions, as long as the physical problem is well posed. The theory is applicable to any problems to which the standard weak formulation is applicable, and can offer numerical solutions with special properties including ,close-to-exact' stiffness, upper bounds and ultra accuracy. Copyright © 2009 John Wiley & Sons, Ltd. [source]


An in vivo model to evaluate the efficacy of barrier creams on the level of skin penetration of chemicals

CONTACT DERMATITIS, Issue 1 2006
Alexa Teichmann
The reservoir function and the barrier function are important properties of the skin. The reservoir function is dependent on the barrier function which, however, needs support by protective measures, in particular under working conditions. Barrier creams represent a possibility to protect the skin. In the present study, a method was developed to investigate the effectiveness of reservoir closure by different formulations. Patent Blue V in water was used as a model penetrant. Its penetration, with and without barrier cream treatment, was analyzed by tape stripping in combination with UV/VIS spectroscopic measurements. The investigations showed that the stratum corneum represents a reservoir for topically applied Patent Blue V in water. Furthermore, the barrier investigations showed that vaseline and bees wax form a 100% barrier on the skin surface. The third barrier cream, containing waxes and surfactant, only partially showed a protective effect against the penetration of Patent Blue V in water. Strong interindividual differences were observed for this barrier product. In conclusion, it was assumed that the application of barrier creams cannot replace other protective measures and should be maximally used to inhibit low-grade irritants or in combination with other protectants or in body areas where other protective measures are not applicable. [source]


Predicting carbon content in illitic clay fractions from surface area, cation exchange capacity and dithionite-extractable iron

EUROPEAN JOURNAL OF SOIL SCIENCE, Issue 4 2002
M. Kahle
Summary We used the specific surface area (SSA), the cation exchange capacity (CEC) and the content of dithionite-extractable iron (Fed) to predict the content of organic carbon in illitic clay fractions of topsoils from loess. We determined SSA (BET-N2 method) and CEC of clay fractions after removing organic C or reducing oxides or both. The CEC and the SSA of the carbon- and oxide-free clay fraction explained 56% and 54% of the variation in C content, respectively. The Fed content of the clay fractions was strongly and negatively related to the C content, and with the SSA of the carbon-free clay fraction it predicted C content almost completely (R2 = 0.96). The results indicate that the amount of cations adhering to the silicate clay minerals and the size of the silicate mineral surface area are important properties of the mineral phase for the storage potential of C. The reason for the negative relation between iron oxides and C content remains unclear. [source]


Challenges in Measuring of Physical Properties of Liquid Phases for Material and Process Optimisation,

ADVANCED ENGINEERING MATERIALS, Issue 4 2007
S. Akbari
The exact knowledge of thermo-physical properties of molten phases is crucial to modern metallurgy. It leads to optimized process windows including better metal/slag separation, suitable slag selection or reduced slag/refractory wetting. The most important properties are melting and boiling point, electrical- and thermal conductivity, melting and transition enthalpies, wetting angle, density, viscosity and surface tension. The aim of this paper is to present opportunities, methods and uncertainties of characterization of this kind of materials. This will be examplified by measuring three physical properties (density, viscosity and surface tension). [source]


Breath-holding and its breakpoint

EXPERIMENTAL PHYSIOLOGY, Issue 1 2006
M. J. Parkes
This article reviews the basic properties of breath-holding in humans and the possible causes of the breath at breakpoint. The simplest objective measure of breath-holding is its duration, but even this is highly variable. Breath-holding is a voluntary act, but normal subjects appear unable to breath-hold to unconsciousness. A powerful involuntary mechanism normally overrides voluntary breath-holding and causes the breath that defines the breakpoint. The occurrence of the breakpoint breath does not appear to be caused solely by a mechanism involving lung or chest shrinkage, partial pressures of blood gases or the carotid arterial chemoreceptors. This is despite the well-known properties of breath-hold duration being prolonged by large lung inflations, hyperoxia and hypocapnia and being shortened by the converse manoeuvres and by increased metabolic rate. Breath-holding has, however, two much less well-known but important properties. First, the central respiratory rhythm appears to continue throughout breath-holding. Humans cannot therefore stop their central respiratory rhythm voluntarily. Instead, they merely suppress expression of their central respiratory rhythm and voluntarily ,hold' the chest at a chosen volume, possibly assisted by some tonic diaphragm activity. Second, breath-hold duration is prolonged by bilateral paralysis of the phrenic or vagus nerves. Possibly the contribution to the breakpoint from stimulation of diaphragm muscle chemoreceptors is greater than has previously been considered. At present there is no simple explanation for the breakpoint that encompasses all these properties. [source]


The implications of solar UV radiation exposure for fish and fisheries

FISH AND FISHERIES, Issue 3 2001
Horacio E Zagarese
Abstract Ultraviolet radiation (UVR) possesses three important properties that combine to make it a potent environmental force. These include the potential to induce damage: UVR carries more energy per photon than any other wavelength reaching the Earth's surface. Such highly energetic photons are known to damage many biological molecules, such as DNA and proteins. In addition, they can initiate a series of redox reactions to form reactive oxygen species (ROS), which cause oxidative stress to cells and tissues. The second property is ubiquity: owing to their dependence on light, primary producers and most visual predators, such as fish, are also necessarily exposed to damaging levels of UVR. Thirdly, the combined effect of UVR and additional environmental factors may result in synergistic effects, such as the photoactivation of organic pollutants and photosensitisation. In natural environments, the concentration of dissolved organic matter (DOM) and habitat depth are the two main factors controlling the degree of UVR exposure experienced by fish. Additional factors include vegetation coverage, particulate materials in suspension, pH and hydrological characteristics, and site location (latitude, elevation). The range of potential effects on fish includes direct DNA damage resulting in embryo and larval mortality, and adult and juvenile sunburn, as well as indirect oxidative stress, phototoxicity and photosensitisation. [source]


Gold Nanorods: From Synthesis and Properties to Biological and Biomedical Applications

ADVANCED MATERIALS, Issue 48 2009
Xiaohua Huang
Abstract Noble metal nanoparticles are capable of confining resonant photons in such a manner as to induce coherent surface plasmon oscillation of their conduction band electrons, a phenomenon leading to two important properties. Firstly, the confinement of the photon to the nanoparticle's dimensions leads to a large increase in its electromagnetic field and consequently great enhancement of all the nanoparticle's radiative properties, such as absorption and scattering. Moreover, by confining the photon's wavelength to the nanoparticle's small dimensions, there exists enhanced imaging resolving powers, which extend well below the diffraction limit, a property of considerable importance in potential device applications. Secondly, the strongly absorbed light by the nanoparticles is followed by a rapid dephasing of the coherent electron motion in tandem with an equally rapid energy transfer to the lattice, a process integral to the technologically relevant photothermal properties of plasmonic nanoparticles. Of all the possible nanoparticle shapes, gold nanorods are especially intriguing as they offer strong plasmonic fields while exhibiting excellent tunability and biocompatibility. We begin this review of gold nanorods by summarizing their radiative and nonradiative properties. Their various synthetic methods are then outlined with an emphasis on the seed-mediated chemical growth. In particular, we describe nanorod spontaneous self-assembly, chemically driven assembly, and polymer-based alignment. The final section details current studies aimed at applications in the biological and biomedical fields. [source]


A G space theory and a weakened weak (W2) form for a unified formulation of compatible and incompatible methods: Part II applications to solid mechanics problems

INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, Issue 9 2010
G. R. Liu
Abstract In part I of this paper, we have established the G space theory and fundamentals for W2 formulation. Part II focuses on the applications of the G space theory to formulate W2 models for solid mechanics problems. We first define a bilinear form, prove some of the important properties, and prove that the W2 formulation will be spatially stable, and convergent to exact solutions. We then present examples of some of the possible W2 models including the SFEM, NS-FEM, ES-FEM, NS-PIM, ES-PIM, and CS-PIM. We show the major properties of these models: (1) they are variationally consistent in a conventional sense, if the solution is sought in a proper H space (compatible cases); (2) They pass the standard patch test when the solution is sought in a proper G space with discontinuous functions (incompatible cases); (3) the stiffness of the discretized model is reduced compared with the finite element method (FEM) model and possibly to the exact model, allowing us to obtain upper bound solutions with respect to both the FEM and the exact solutions and (4) the W2 models are less sensitive to the quality of the mesh, and triangular meshes can be used without any accuracy problems. These properties and theories have been confirmed numerically via examples solved using a number of W2 models including compatible and incompatible cases. We shall see that the G space theory and the W2 forms can formulate a variety of stable and convergent numerical methods with the FEM as one special case. Copyright © 2009 John Wiley & Sons, Ltd. [source]


How Persistent is Stock Return Volatility?

JOURNAL OF BUSINESS FINANCE & ACCOUNTING, Issue 5-6 2007
An Answer with Markov Regime Switching Stochastic Volatility Models
Abstract:, We propose generalised stochastic volatility models with Markov regime changing state equations (SVMRS) to investigate the important properties of volatility in stock returns, specifically high persistence and smoothness. The model suggests that volatility is far less persistent and smooth than the conventional GARCH or stochastic volatility. Persistent short regimes are more likely to occur when volatility is low, while far less persistence is likely to be observed in high volatility regimes. Comparison with different classes of volatility supports the SVMRS as an appropriate proxy volatility measure. Our results indicate that volatility could be far more difficult to estimate and forecast than is generally believed. [source]


Relationship between fluctuating asymmetry and fitness within and between stressed and unstressed populations of the wolf spider Pirata piraticus

JOURNAL OF EVOLUTIONARY BIOLOGY, Issue 6 2003
F. Hendrickx
Abstract Although developmental instability, measured as fluctuating asymmetry (FA), is expected to be positively related to stress and negatively to fitness, empirical evidence is often lacking or contradictory when patterns are compared at the population level. We demonstrate that two important properties of stressed populations may mask such relationships: (i) a stronger relationship between FA and fitness, resulting in stronger selection against low quality (i.e. developmental unstable) individuals and (ii) the evolution of adaptive responses to environmental stress. In an earlier study, we found female wolf spiders Pirata piraticus from metal exposed populations to be characterized by both reduced clutch masses and increased egg sizes, the latter indicating an adaptive response to stress. By studying the relationship between these two fitness related traits and levels of FA at individual level, we here show a significant negative correlation between FA and clutch mass in metal stressed populations but not in unstressed reference populations. As a result, levels of population FA may be biased downward under stressful conditions because of the selective removal of developmentally unstable (low quality) individuals. We further show that females that produced larger eggs in stressed populations exhibited lower individual FA levels. Such interaction between individual FA and fitness with stress may confound the effect of metal stress on FA, resulting in an absence of relationships between FA, fitness and stress at the population level. [source]


Functional Properties of Improved Glycinin and ,-nglycinin Fractions

JOURNAL OF FOOD SCIENCE, Issue 4 2004
D. A. Rickert
ABSTRACT: Glycinin and ,-conglycinin have unique functionality characteristics that contribute important properties in soy foods and soy ingredients. Limited functionality data have been published for glycinin and ,-conglycinin fractions produced in pilot-scale quantities. Protein extraction conditions were previously optimized for our pilotscale fractionation process to maximize protein solubilization and subsequent product recovery. Glycinin, ,-conglycinin, and intermediate (mixture of glycinin and ,-conglycinin) fractions were prepared using optimized-process (OP) extraction conditions (10:1 water-to-flake ratio, 45°C) and previous conditions termed Wu process (WP) (15:1, 20°C). Viscosity, solubility, gelling, foaming, emulsification capacity, and emulsification activity and stability of the fractionated proteins, and soy protein isolate (SPI) produced from the same defatted soy white flakes were compared to evaluate functional properties of these different protein fractions. Differential scanning calorimetry, sodium dodecylsulfate-polyacrylamide gel electrophoresis, and surface hydrophobicity data were used to interpret functionality differences. OP ,-conglycinin had more glycinin contamination than did the WP ,-conglycinin. OP and WP solubility profiles were each similar for respective glycinin and ,-conglycinin fractions. Emulsification activities and stabilities were higher for OP ,-conglycinin and OP intermediate fractions compared with respective WP fractions. ,-Conglycinin and SPI emulsification capacities (ECs) mirrored solubility profile, whereas glycinin ECs did not. OP glycinin had a higher foaming capacity than WP glycinin. OP and WP intermediate fraction apparent viscosities trended higher than those of other protein fractions. ,-Conglycinin dispersions at pH 3 and 7 produced firm gels at 80°C, whereas glycinin dispersions formed weaker gels at 99°C and did not gel at 80°C. [source]


Impact of surface tension and viscosity on solids motion in a conical high shear mixer granulator

AICHE JOURNAL, Issue 12 2009
Xianfeng Fan
Abstract Surface tension and viscosity are the important properties of liquid binders affecting wet granulation processes. They could be used to control solids flow pattern and relative motion of particles for controlling wetting, granule growth, consolidation, and breakage. This study aims to investigate experimentally the impacts of the two properties with a conical high shear granulator. The results show significant effects of viscosity and surface tension on solids flow pattern and relative motion of particles. The relative importance of the two parameters, the surface tension and the viscosity, are found to vary with the axial and radial positions in the granulator. For example, the viscosity force decreases with an increase in the bed height in the axial direction (vertical plane). The viscosity force between particles coated with PEG4000 solution is in mN order, whereas that between particles coated with ethanol and water is in ,N order. © 2009 American Institute of Chemical Engineers AIChE J, 2009 [source]


Statistical and methodological issues in the analysis of complex sample survey data: Practical guidance for trauma researchers,

JOURNAL OF TRAUMATIC STRESS, Issue 5 2008
Brady T. West
Standard methods for the analysis of survey data assume that the data arise from a simple random sample of the target population. In practice, analysts of survey data sets collected from nationally representative probability samples often pay little attention to important properties of the survey data. Standard statistical software procedures do not allow analysts to take these properties of survey data into account. A failure to use more specialized procedures designed for survey data analysis can impact both simple descriptive statistics and estimation of parameters in multivariate models. In this article, the author provides trauma researchers with a practical introduction to specialized methods that have been developed for the analysis of complex sample survey data. [source]


Compatibilized Ny6-based blends as ­innovative packaging materials: ­determination of some important properties ­relevant to food contact application

PACKAGING TECHNOLOGY AND SCIENCE, Issue 3 2001
P. Laurienzo
Abstract Chemical physical analysis, photo-oxidative stability and lipid oxidation of innovative polymeric films based on blends of nylon 6 and ethylene-co-vinyl alcohol for use in food packaging have been investigated. Thermal mechanical analysis showed that the presence of an interfacial agent in the blend stabilized the films towards the action of permeants. Synergistic effects of the interfacial agent are reported with respect to UV photostability. Peroxide value (PV) was used to follow the oxidation of the olive oil, and for this parameter also the influence of the interfacial agent was clearly detected. Copyright © 2001 John Wiley & Sons, Ltd. [source]


Synthesis of azobenzene-functionalized two-arm, three-arm and four-arm telomers using polyfunctional chain transfer agents

POLYMER INTERNATIONAL, Issue 11 2009
Md Zahangir Alam
Abstract BACKGROUND: Star-shaped polymers are very attractive because of their interesting properties such as reduced viscosity, good solubility, low glass transition temperature and fast response to external stimuli. The incorporation of azobenzene moieties in star-shaped polymers could significantly widen their potential applications in various optical devices. One of the most important properties of the azobenzene chromophore is its reversible trans,cis photoisomerization induced by UV or visible light. Photoisomerization induces conformational changes in azopolymer chains, which in turn lead to macroscopic variations in chemical and physical properties of the surroundings and media. RESULTS: This study reports the synthesis of azobenzene-functionalized two-, three- and four-arm telomers via free radical telomerization using the di-, tri- and tetrafunctional chain transfer agents 1,2- and 1,4-benzenedimethanethiol, trimethylolpropane-tris(2-mercaptoacetate) and pentaerythritol-tetrakis(3-mercaptopropionate), respectively, in the presence of azobisisobutyronitrile. Azotelomers were characterized using gel permeation chromatography and 1H NMR and Fourier transform infrared spectroscopy. Thermal phase transition behaviors were investigated using differential scanning calorimetry and polarized optical microscopy. Azotelomers synthesized in this study showed reversible photoisomerization and a fast generation of birefringence. CONCLUSION: Considering the photoisomerization behavior and birefringence of the two-, three- and four-arm azotelomers, it can be concluded that they could be potential candidates for use in various optical devices. Copyright © 2009 Society of Chemical Industry [source]


A review of forecast error covariance statistics in atmospheric variational data assimilation.

THE QUARTERLY JOURNAL OF THE ROYAL METEOROLOGICAL SOCIETY, Issue 637 2008
II: Modelling the forecast error covariance statistics
Abstract This article reviews a range of leading methods to model the background error covariance matrix (the B -matrix) in modern variational data assimilation systems. Owing partly to its very large rank, the B -matrix is impossible to use in an explicit fashion in an operational setting and so methods have been sought to model its important properties in a practical way. Because the B -matrix is such an important component of a data assimilation system, a large effort has been made in recent years to improve its formulation. Operational variational assimilation systems use a form of control variable transform to model B. This transform relates variables that exist in the assimilation's ,control space' to variables in the forecast model's physical space. The mathematical basis on which the control variable transform allows the B-matrix to be modelled is reviewed from first principles, and examples of existing transforms are brought together from the literature. The method allows a large rank matrix to be represented by a relatively small number of parameters, and it is shown how information that is not provided explicitly is filled in. Methods use dynamical properties of the atmosphere (e.g. balance relationships) and make assumptions about the way that background errors are spatially correlated (e.g. homogeneity and isotropy in the horizontal). It is also common to assume that the B -matrix is static. The way that these, and other, assumptions are built into systems is shown. The article gives an example of how a current method performs. An important part of this article is a discussion of some new ideas that have been proposed to improve the method. Examples include how a more appropriate use of balance relations can be made, how errors in the moist variables can be treated and how assumptions of homogeneity/isotropy and the otherwise static property of the B -matrix can be relaxed. Key developments in the application of dynamics, wavelets, recursive filters and flow-dependent methods are reviewed. The article ends with a round up of the methods and a discussion of future challenges that the field will need to address. Copyright © 2008 Royal Meteorological Society [source]


Non-blocking decentralized control of discrete event systems based on Petri nets,

ASIAN JOURNAL OF CONTROL, Issue 3 2010
Feihua Lu
Abstract The non-blocking property of discrete event systems can formulate many practical and important properties of manufacturing systems, such as deadlock freeness, liveness and reversibility. But it is difficult to guarantee non-blocking control. This paper presents a hybrid approach to decentralized control of discrete event systems. More generalized constraints are considered in this approach, which gives a graphical way of designing coordinators to keep the non-blocking property of the closed-loop system with decentralized supervisors. This approach also guarantees that the closed-loop system is maximally permissive. Copyright © 2010 John Wiley and Sons Asia Pte Ltd and Chinese Automatic Control Society [source]


Assembling the stratigraphic record: depositional patterns and time-scales in an experimental alluvial basin

BASIN RESEARCH, Issue 3 2002
B. A. Sheets
ABSTRACT Our understanding of sedimentation in alluvial basins is best for very short and very long time-scales (those of bedforms to bars and basinwide deposition, respectively). Between these end members, the intermediate time-scales of stratigraphic assembly are especially hard to constrain with field data. We address these ,mesoscale' fluvial dynamics with data from an experimental alluvial system in a basin with a subsiding floor. Observations of experimental deposition over a range of time-scales illustrate two important properties of alluvial systems. First, ephemeral flows are disproportionately important in basin filling. Lack of correlation between flow occupation and sedimentation indicates that channelized flows serve mainly as conduits for sediment, while most deposition occurs via short-lived unchannelized flow events. Second, there is a characteristic time required for individual depositional events to average to basin-scale stratal patterns. This time can be scaled in terms of the time required for a single channel-depth of aggradation, and in this form is constant through a four-fold variation of experimental subsidence rate. [source]


Degradation of xenobiotics in a partitioning bioreactor in which the partitioning phase is a polymer

BIOTECHNOLOGY & BIOENGINEERING, Issue 4 2003
Brian G. Amsden
Abstract Two-phase partitioning bioreactors (TPPBs) are characterized by a cell-containing aqueous phase and a second immiscible phase that contains toxic and/or hydrophobic substrates that partition to the cells at subinhibitory levels in response to the metabolic demand of the organisms. To date, the delivery phase in TPPBs has been a hydrophobic solvent that traditionally needed to possess a variety of important properties including biocompatibility, nonbioavailability, low volatility, and low cost, among others. In the present work we have shown that the organic solvent phase can be replaced by inexpensive polymer beads that function in a similar fashion as organic solvents, delivering a toxic substrate to cells based on equilibrium considerations. Specifically, 3.4 mm diameter beads of poly(ethylene-co-vinyl acetate) (EVA) were used to reduce the aqueous concentration of phenol in a bioreactor from toxic levels ( ,2,000 mg/L) to subinhibitory levels (,750 mg/L), after which Pseudomonas putida ATCC 11172 was added to the system and allowed to consume the total phenol loading. Thus, the beads absorbed the toxic substrate and released it to the cells on demand. The EVA beads, which could be reused, were able to absorb 14 mg phenol/g EVA. This work has opened the possibility of using widely mixed cultures in TPPB systems without concern for degradation of the delivery material and without concern of contamination. © 2003 Wiley Periodicals. Biotechnol Bioeng84: 399,305, 2003. [source]


Effect of Solvation Film on the Viscosity of Colloidal Dispersions

CHINESE JOURNAL OF CHEMISTRY, Issue 5 2005
Peng Chang-Sheng
Abstract Viscosity is one of the most important properties of colloids in mixing, transportation, stabilization, energy consumption, and so on. According to Einstein's viscosity equation, the viscosity of a colloidal dispersion increases with the increase of particle concentration. And the equation can be applicable to all micro-particle dispersions, because the effect of solvation films coated on particles can be neglectable in that case. But with the decrease of particle size to nano-scale, the formation of solvation films on nano-particles can greatly affect the viscosity of a dispersion, and Einstein's equation may not be applicable to this case. In this work, one kind of micro-size silica particle and two kinds of nano-size silica particles were used to investigate the effect of solvation films on dispersion viscosity, dispersed in water and ethyl alcohol solvents, respectively. The results of theoretical calculation and experimental investigation show that the increase of viscosity is contributed from solvation films by more than 95 percent for nano-particle dispersions, while less than 10 percent for micro-particle dispersions. [source]


Existence of an asymptotic velocity and implications for the asymptotic behavior in the direction of the singularity in T3 -Gowdy

COMMUNICATIONS ON PURE & APPLIED MATHEMATICS, Issue 7 2006
Hans Ringström
This is the first of two papers that together prove strong cosmic censorship in T3 -Gowdy space-times. In the end, we prove that there is a set of initial data, open with respect to the C2 × C1 topology and dense with respect to the C, topology, such that the corresponding space-times have the following properties: Given an inextendible causal geodesic, one direction is complete and the other is incomplete; the Kretschmann scalar, i.e., the Riemann tensor contracted with itself, blows up in the incomplete direction. In fact, it is possible to give a very detailed description of the asymptotic behavior in the direction of the singularity for the generic solutions. In this paper, we shall, however, focus on the concept of asymptotic velocity. Under the symmetry assumptions made here, Einstein's equations reduce to a wave map equation with a constraint. The target of the wave map is the hyperbolic plane. There is a natural concept of kinetic and potential energy density; perhaps the most important result of this paper is that the limit of the potential energy as one lets time tend to the singularity for a fixed spatial point is 0 and that the limit exists for the kinetic energy. We define the asymptotic velocity v, to be the nonnegative square root of the limit of the kinetic energy density. The asymptotic velocity has some very important properties. In particular, curvature blowup and the existence of smooth expansions of the solutions close to the singularity can be characterized by the behavior of v,. It also has properties such that if 0 < v,(,0) < 1, then v, is smooth in a neighborhood of ,0. Furthermore, if v,(,0) > 1 and v, is continuous at ,0, then v, is smooth in a neighborhood of ,0. Finally, we show that the map from initial data to the asymptotic velocity is continuous under certain circumstances and that what will in the end constitute the generic set of solutions is an open set with respect to C2 × C1 topology on initial data. © 2005 Wiley Periodicals, Inc. [source]


Strikingly fast microtubule sliding in bundles formed by Chlamydomonas axonemal dynein,

CYTOSKELETON, Issue 6 2010
Susumu Aoyama
Abstract Chlamydomonas axonemal extracts containing outer-arm dynein bundle microtubules when added in the absence of ATP. The bundles dissociate after addition of ATP (Haimo et al., Proc Natl Acad Sci USA 76:5759,5768, 1979). In the present study, we investigated the ATP-induced bundle dissociation process using caged ATP. Application of ,0.5 mM ATP induced microtubule sliding at ,30 ,m·s,1, which was 1.5 times faster than the microtubule sliding observed in protease-treated axonemes and five times faster than microtubule gliding on glass surfaces coated with outer-arm dynein. Bundles formed by mutant dynein molecules that lack one of the three heavy chains (HCs) displayed similar high-speed intermicrotubule sliding. These results suggest that Chlamydomonas outer-arm dynein molecules, when aligned, can translocate microtubules at high speed and that the high-speed sliding under load-free conditions does not require the complete set of the three HCs. It is likely that each of the three HCs has the ability to produce high-speed sliding, which should be an important property for their cooperation. © 2010 Wiley-Liss, Inc. [source]


Certified solutions for hydraulic structures using the node-based smoothed point interpolation method (NS-PIM)

INTERNATIONAL JOURNAL FOR NUMERICAL AND ANALYTICAL METHODS IN GEOMECHANICS, Issue 15 2010
J. Cheng
Abstract A meshfree node-based smoothed point interpolation method (NS-PIM), which has been recently developed for solid mechanics problems, is applied to obtain certified solutions with bounds for hydraulic structure designs. In this approach, shape functions for displacements are constructed using the point interpolation method (PIM), and the shape functions possess the Kronecker delta property and permit the straightforward enforcement of essential boundary conditions. The generalized smoothed Galerkin weak form is then applied to construct discretized system equations using the node-based smoothed strains. As a very novel and important property, the approach can obtain the upper bound solution in energy norm for hydraulic structures. A 2D gravity dam problem and a 3D arch dam problem are solved, respectively, using the NS-PIM and the simulation results of NS-PIM are found to be the upper bounds. Together with standard fully compatible FEM results as a lower bound, we have successfully determined the solution bounds to certify the accuracy of numerical solutions. This confirms that the NS-PIM is very useful for producing certified solutions for the analysis of huge hydraulic structures. Copyright © 2009 John Wiley & Sons, Ltd. [source]


Improved GMM with parameter initialization for unsupervised adaptation of Brain,Computer interface

INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN BIOMEDICAL ENGINEERING, Issue 6 2010
Guangquan Liu
Abstract An important property of brain signals is their nonstationarity. How to adapt a brain,computer interface (BCI) to the changing brain states is one of the challenges faced by BCI researchers, especially in real application where the subject's real intent is unknown to the system. Gaussian mixture model (GMM) has been used for the unsupervised adaptation of the classifier in BCI. In this paper, a method of initializing the model parameters is proposed for expectation maximization-based GMM parameter estimation. This improved GMM method and other two existing unsupervised adaptation methods are applied to groups of constructed artificial data with different data properties. Performances of these methods in different situations are analyzed. Compared with the other two unsupervised adaptation methods, this method shows a better ability of adapting to changes and discovering class information from unlabelled data. The methods are also applied to real EEG data recorded in 19 experiments. For real data, the proposed method achieves an error rate significantly lower than the other two unsupervised methods. Results of the real data agree with the analysis based on the artificial data, which confirms not only the effectiveness of our method but also the validity of the constructed data. Copyright © 2009 John Wiley & Sons, Ltd. [source]


Low power switched-current circuits with low sensitivity to the rise/fall time of the clock

INTERNATIONAL JOURNAL OF CIRCUIT THEORY AND APPLICATIONS, Issue 5 2010
Radek Rudnicki
Abstract The switched-current (SI) technique permits realizing analog discrete-time circuits in standard digital CMOS technology. A very important property of the analog part of a system on a chip is the possibility it offers for realizing some functions of a digital circuit, but with reduced power consumption. In this paper, a low power SI integrator is presented. It is shown that an integrator consuming a fraction of a milliwatt can be designed in 0.35µm CMOS technology with the use of narrow transistor channels, and with the channel length as a design parameter. The impact of the rise/fall time of the clock signal on the integrator operation is observed. It is shown that this effect can be reduced when the proper switch dimensions are taken for the integrator. Analysis and measurements of the integrator noise are presented. The integrator was built with equal size transistors, yielding less sensitivity to variations in production parameters. An experimental chip in 0.35µm CMOS technology was fabricated, and measurements are compared with results obtained during analysis and simulations. In order to verify the properties of the designed integrator experimentally, a first-order filter is built with the use of elementary cells on the chip. Copyright © 2008 John Wiley & Sons, Ltd. [source]


Prediction intervals in linear regression taking into account errors on both axes

JOURNAL OF CHEMOMETRICS, Issue 10 2001
F. Javier del Rķo
Abstract This study reports the expressions for the variances in the prediction of the response and predictor variables calculated with the bivariate least squares (BLS) regression technique. This technique takes into account the errors on both axes. Our results are compared with those of a simulation process based on six different real data sets. The mean error in the results from the new expressions is between 4% and 5%. With weighted least squares, ordinary least squares, the constant variance ratio approach and orthogonal regression, on the other hand, mean errors can be as high as 85%, 277%, 637% and 1697% respectively. An important property of the prediction intervals calculated with BLS is that the results are not affected when the axes are switched. Copyright © 2001 John Wiley & Sons, Ltd. [source]


Measurement of the setting expansion of phosphate-bonded investment materials: Part I , Development of the Casting-Ring Test

JOURNAL OF ORAL REHABILITATION, Issue 7 2004
C. H. Lloyd
summary, The setting expansion is an important property for a phosphate-bonded investment material. This research was undertaken to investigate a test that might be suitable for its measurement when used in a Standard. In the ,Casting-Ring Test', the investment sample is contained in a steel ring and expands to displace a precisely positioned pin. Variables with the potential to alter routine reproduction of the value were investigated. The vacuum-mixer model is a production laboratory variable that must not be ignored and for this reason, experiments were repeated using a different vacuum-mixer located at a second test site. Restraint by the rigid ring material increased expansion, while force on the pin reduced it. Expansion was specific to the lining selected. Increased environmental temperature decreased the final value. Expansion was still taking place at a time at which its value might be measured. However, when these factors are set, the reproducibility of values for setting expansion was good at both test sites (coefficient of variation 14%, at most). The results revealed that with the control that is available reliable routine measurement is possible in a Standard test. The inter-laboratory variable, vacuum-mixer model, produced significant differences and it should be the subject of further investigation. [source]


Measuring the surface area of aluminum hydroxide adjuvant

JOURNAL OF PHARMACEUTICAL SCIENCES, Issue 7 2002
Cliff T. Johnston
Abstract The traditional method of determining surface area, nitrogen gas sorption, requires complete drying of the sample prior to analysis. This technique is not suitable for aluminum hydroxide adjuvant because it is composed of submicron, fibrous particles that agglomerate irreversibly upon complete removal of water. In this study, the surface area of a commercial aluminum hydroxide adjuvant was determined by a gravimetric/FTIR method that measures the water adsorption capacity. This technique does not require complete drying of the adjuvant. Five replicate determinations gave a mean surface area of 514 m2/g and a 95% confidence interval of 36 m2/g for a commercial aluminum hydroxide adjuvant. The X-ray diffraction pattern and the Scherrer equation were used to calculate the dimensions of the primary crystallites. The average calculated dimensions were 4.5,×,2.2,×,10 nm. Based on these dimensions, the mean calculated surface area of the commercial aluminum hydroxide adjuvant was 509 m2/g, and the 95% confidential interval was 30 m2/g. The close agreement between the two surface area values indicates that either method may be used to determine the surface area of aluminum hydroxide adjuvant. The high surface area, which was determined by two methods, is an important property of aluminum hydroxide adjuvants, and is the basis for the intrinsically high protein adsorption capacity. © 2002 Wiley-Liss Inc. and the American Pharmaceutical Association J Pharm Sci 91:1702,1706, 2002 [source]


Applying two-level reinforcement ranking in query-oriented multidocument summarization

JOURNAL OF THE AMERICAN SOCIETY FOR INFORMATION SCIENCE AND TECHNOLOGY, Issue 10 2009
Furu Wei
Abstract Sentence ranking is the issue of most concern in document summarization today. While traditional feature-based approaches evaluate sentence significance and rank the sentences relying on the features that are particularly designed to characterize the different aspects of the individual sentences, the newly emerging graph-based ranking algorithms (such as the PageRank-like algorithms) recursively compute sentence significance using the global information in a text graph that links sentences together. In general, the existing PageRank-like algorithms can model well the phenomena that a sentence is important if it is linked by many other important sentences. Or they are capable of modeling the mutual reinforcement among the sentences in the text graph. However, when dealing with multidocument summarization these algorithms often assemble a set of documents into one large file. The document dimension is totally ignored. In this article we present a framework to model the two-level mutual reinforcement among sentences as well as documents. Under this framework we design and develop a novel ranking algorithm such that the document reinforcement is taken into account in the process of sentence ranking. The convergence issue is examined. We also explore an interesting and important property of the proposed algorithm. When evaluated on the DUC 2005 and 2006 query-oriented multidocument summarization datasets, significant results are achieved. [source]


Monitoring capability indices using an EWMA approach

QUALITY AND RELIABILITY ENGINEERING INTERNATIONAL, Issue 7 2007
Philippe Castagliola
Abstract When performing a capability analysis it is recommended to first check that the process is stable, for example, by using control charts. However, there are occasions when a process cannot be stabilized, but it is nevertheless capable. Then the classical control charts fail to efficiently monitor the process position and variability. In this paper we propose a new strategy to solve this problem, where capability indices are monitored in place of the classical sample statistics such as the mean, median, standard deviation, or range. The proposed procedure uses the family of capability indices proposed by Vännman combined with a logarithmic transformation and an EWMA approach. One important property of the procedure presented here is that the control limits used for the monitoring of capability indices only depend on the capability level assumed for the process. The experimental results presented in this paper demonstrates how this new approach efficiently monitors capable processes by detecting changes in the capability level. Copyright © 2006 John Wiley & Sons, Ltd. [source]