Home About us Contact | |||
Important Polymorphisms (important + polymorphism)
Selected AbstractsNFKB1-94ins/del polymorphism is not associated with lung injury after cardiopulmonary bypassANAESTHESIA, Issue 2 2010J. F. Wang Summary Nuclear factor (NF)-,B (NFKB1)-94ins/del is an important polymorphism that affects promoter activity of the NFKB1 gene and is potentially associated with several inflammatory diseases. We investigated the association of this polymorphism with lung injury after cardiac surgery and cardiopulmonary bypass in a prospective cohort study of 283 patients. Genotyping was performed by high resolution melting analysis; analysis indicated no association of NFKB1 with postoperative lung injury (p = 0.064). Relative risks of the del allele and the del/del genotype were 1.34 (95% CI 1.02,1.75) and 1.74 (95% CI 1.00,3.05) respectively. Logistic regression analysis (with factors including age, peripheral vascular disease and surgical duration as risk factors of lung injury after cardiac surgery with cardiopulmonary bypass) also failed to confirm that the NFKB1 genotype is influential for lung injury (p = 0.113). We conclude that, contrary to some other evidence, the NFKB1-94ins/del polymorphism is not associated with lung injury after cardiac surgery with cardiopulmonary bypass. [source] Detection of single nucleotide substitution by competitive allele-specific short oligonucleotide hybridization (CASSOH) with immunochromatographic strip,HUMAN MUTATION, Issue 2 2003Yoichi Matsubara Abstract Recent advances in human genome research have revealed that genetic polymorphisms, such as single nucleotide polymorphisms (SNPs), are closely associated with susceptibility to various common diseases and adverse drug reactions. Also, numerous mutations responsible for a number of genetic diseases have been identified. Clinical application of genetic information to individual health care requires simple and rapid identification of nucleotide changes in clinical settings. We have devised a novel low-tech method for the detection of a single nucleotide substitution using competitive allele-specific short oligonucleotide hybridization with immunochromatographic strip. The gene of interest is PCR-amplified, hybridized to an allele-specific short oligonucleotide probe in the presence of a competitive oligonucleotide, and subjected to chromatography using a DNA test strip at room temperature. The genotype is unambiguously determined by the presence or the absence of visible purple lines on a strip. Feasibility of the method was demonstrated by the detection of a prevalent disease-causing mutations in glycogen storage disease type Ia (G6PC), medium-chain acyl-CoA dehydrogenase deficiency (ACADM), non-ketotic hyperglycinemia (GLDC), and clinically important polymorphisms in the CYP2C19 gene and the aldehyde dehydrogenase 2 gene (ALDH2). The procedure does not demand either technical expertise or expensive instruments and is readily performed in local clinical laboratories. The result is obtained within 10 min after PCR. This rapid and simple method of SNP detection may be used for point-of-care genetic diagnosis with potentially diverse clinical applications. Hum Mutat 22:166,172, 2003. © 2003 Wiley-Liss, Inc. [source] Pro-inflammatory genetic profiles in subjects with peripheral arterial occlusive disease and critical limb ischemiaJOURNAL OF INTERNAL MEDICINE, Issue 1 2007A. Flex Abstract. Objectives., Single nucleotide polymorphisms in genes encoding inflammatory molecules may determine genetic profiles associated with increased risk of development and progression of cardiovascular diseases. In this study, we evaluated distribution and reciprocal interaction of a set of functionally important polymorphisms of genes encoding prototypical inflammatory molecules in subjects with peripheral arterial occlusive disease (PAOD) and critical limb ischemia (CLI). We also investigated whether synergistic interactions between these pro-inflammatory gene polymorphisms influence the risk of PAOD and CLI. Design, subjects and methods., In a genetic association study that included 157 PAOD patients and 206 controls, the following gene polymorphisms were analysed: C-reactive protein (CRP) 1059 G/C, interleukin-6 (IL-6)-174 G/C, macrophage migration inhibitory factor (MIF)-173 G/C, monocyte chemoattractant protein (MCP-1) , 2518 A/G, E-selectin (E-Sel) Ser128Arg, intercellular adhesion molecule-1 (ICAM-1) 469 E/K, matrix metalloproteinase (MMP),1 -1607 1G/2G, MMP-3 -1171 5A/6A and MMP-9 -1563 C/T. Results:, We found that IL-6, E-sel, ICAM-1, MCP-1, MMP-1 and MMP-3 gene polymorphisms were significantly and independently associated with PAOD. We also found that these pro-inflammatory polymorphisms determine genetic profiles that are associated with different levels of risk for PAOD and CLI, depending on the number of high-risk genotypes concomitantly carried by a given individual. Conclusions:, Pro-inflammatory genetic profiles are significantly more common in subjects with PAOD. Synergistic effects between pro-inflammatory genotypes might be potential markers for the presence and severity of atherosclerotic disorders. [source] Interactions Between HERC2, OCA2 and MC1R May Influence Human Pigmentation PhenotypeANNALS OF HUMAN GENETICS, Issue 2 2009Wojciech Branicki Summary Human pigmentation is a polygenic trait which may be shaped by different kinds of gene,gene interactions. Recent studies have revealed that interactive effects between HERC2 and OCA2 may be responsible for blue eye colour determination in humans. Here we performed a population association study, examining important polymorphisms within the HERC2 and OCA2 genes. Furthermore, pooling these results with genotyping data for MC1R, ASIP and SLC45A2 obtained for the same population sample we also analysed potential genetic interactions affecting variation in eye, hair and skin colour. Our results confirmed the association of HERC2 rs12913832 with eye colour and showed that this SNP is also significantly associated with skin and hair colouration. It is also concluded that OCA2 rs1800407 is independently associated with eye colour. Finally, using various approaches we were able to show that there is an interaction between MC1R and HERC2 in determination of skin and hair colour in the studied population sample. [source] |