Home About us Contact | |||
Important Adaptation (important + adaptation)
Selected AbstractsBacteria in oral secretions of an endophytic insect inhibit antagonistic fungiECOLOGICAL ENTOMOLOGY, Issue 6 2006YASMIN J. CARDOZA Abstract 1.,Colonisation of host trees by an endophytic herbivore, the spruce beetle, Dendroctonus rufipennis, is accompanied by invasion of its galleries by a number of fungal species. Four of these associated species were identified as Leptographium abietinum, Aspergillus fumigatus, Aspergillus nomius, and Trichoderma harzianum. 2.,Trichoderma and Aspergillus significantly reduced spruce beetle survival and reproduction in controlled assays. 3.,A previously undescribed behaviour was observed, in which spruce beetle adults exuded oral secretions, especially within fungus-pervaded galleries. 4.,These oral secretions inhibited the growth of fungi except A. nomius, and disrupted the morphology of the latter. Administration of these secretions indicated a dose-dependent inhibitory effect. 5.,Oral secretions cultured on microbiological media yielded substantial bacterial growth. 6.,Filter-sterilised secretions failed to inhibit fungal growth, evidence that the bacteria are responsible for the antifungal activity. 7.,Nine bacterial isolates belonging to the Actinobacteria, Firmicutes, Gammaproteobacteria, and Betaproteobacteria taxa were obtained from the secretions. 8.,Bacterial isolates showed species-specific inhibitory activity against the four fungi antagonistic to spruce beetle. The bacterium with the strongest fungal inhibition activity was the actinomycete Micrococcus luteus. 9.,The production of bark beetle secretions containing bacteria that inhibit fungal growth is a novel finding. This suggests an additional level of complexity to ecological associations among bark beetles, conifers, and microorganisms, and an important adaptation for colonising subcortical tissue. [source] A molecular assessment of the iron stress response in the two phylogenetic clades of TrichodesmiumENVIRONMENTAL MICROBIOLOGY, Issue 1 2010P. Dreux Chappell Summary Trichodesmium spp. play key roles in global carbon and nitrogen budgets and thus defining what controls their productivity is important for understanding climate change. While iron availability has been shown to be an important chemical factor for controlling both growth and nitrogen fixation rates in Trichodesmium, all culture experiments to date have focused solely on representatives from one clade of Trichodesmium. Genomic sequence analysis determined that the Trichodesmium erythraeum (IMS101) genome contains many of the archetypical genes involved in the prokaryotic iron stress response. Focusing on three of these genes, isiB, idiA and feoB, we found that all three showed an iron stress response in axenic T. erythraeum (IMS101), and their sequences were well conserved across four species in our Trichodesmium culture collection [consisting of two T. erythraeum strains (IMS101 and GBRTRLI101), two Trichodesmium tenue strains (Z-1 and H9-4), Trichodesmium thiebautii and Trichodesmium spiralis]. With clade-specific quantitative PCR (qPCR) primers for one of these genes, isiB, we found that high isiB expression at low Fe levels corresponded to specific reductions in N2 fixation rates in both major phylogenetic clades of Trichodesmium (the T. erythraeum clade and T. tenue clade). With regard to the two clades, the most significant difference determined was temperature optima, while more subtle differences in growth, N2 fixation rate and gene expression responses to Fe stress were also observed. However the apparent conservation of the Fe stress response in the Trichodesmium genus suggests that it is an important adaptation for their niche in the oligotrophic ocean. [source] Loss of Hypothalamic Response to Leptin During Pregnancy Associated with Development of Melanocortin ResistanceJOURNAL OF NEUROENDOCRINOLOGY, Issue 5 2009S. R. Ladyman Hypothalamic leptin resistance during pregnancy is an important adaptation that facilitates the state of positive energy balance required for fat deposition in preparation for lactation. Within the arcuate nucleus, pro-opiomelanocortin (POMC) neurones and neuropeptide Y (NPY)/agouti-related gene protein (AgRP) neurones are first-order leptin responsive neurones involved in the regulation of energy balance. The present study aimed to investigate whether the regulation of these neuropeptides is disrupted during pregnancy in association with the development of leptin resistance. As measured by quantitative in situ hybridisation, POMC and AgRP mRNA levels were not significantly different during pregnancy, whereas NPY mRNA levels increased such that, by day 21 of pregnancy, levels were significantly higher than in nonpregnant, animals. These data suggest that these neurones were not responding normally to the elevated leptin found during pregnancy. To further characterise the melanocortin system during pregnancy, double-label immunohistochemistry was used to quantify leptin-induced phosphorylation of signal transducer and activator of transcription 3 (pSTAT3) in POMC neurones, using ,-melanocyte-stimulating hormone (MSH) as a marker. The percentage of ,-MSH neurones containing leptin-induced pSTAT3 did not significantly differ from nonpregnant animals, indicating that there was no change in the number of POMC neurones that respond to leptin during pregnancy. Treatment with ,-MSH significantly reduced food intake in nonpregnant rats, but not in pregnant rats, indicating resistance to the satiety actions of ,-MSH during pregnancy. The data suggest that multiple mechanisms contribute to leptin resistance during pregnancy. As well as a loss of responses in first-order leptin-responsive neurones in the arcuate nucleus, there is also a downstream disruption in the melanocortin system. [source] Seasonal variations in nitrate reductase activity and internal N pools in intertidal brown algae are correlated with ambient nitrate concentrationsPLANT CELL & ENVIRONMENT, Issue 6 2007ERICA B. YOUNG ABSTRACT Nitrogen metabolism was examined in the intertidal seaweeds Fucus vesiculosus, Fucus serratus, Fucus spiralis and Laminaria digitata in a temperate Irish sea lough. Internal NO3 - storage, total N content and nitrate reductase activity (NRA) were most affected by ambient NO3 - , with highest values in winter, when ambient NO3 - was maximum, and declined with NO3 - during summer. In all species, NRA was six times higher in winter than in summer, and was markedly higher in Fucus species (e.g. 256 ± 33 nmol NO3 - min,1 g,1 in F. vesiculosus versus 55 ± 17 nmol NO3 - min,1 g,1 in L. digitata). Temperature and light were less important factors for N metabolism, but influenced in situ photosynthesis and respiration rates. NO3 - assimilating capacity (calculated from NRA) exceeded N demand (calculated from net photosynthesis rates and C : N ratios) by a factor of 0.7,50.0, yet seaweeds stored significant NO3 - (up to 40,86 µmol g,1). C : N ratio also increased with height in the intertidal zone (lowest in L. digitata and highest in F. spiralis), indicating that tidal emersion also significantly constrained N metabolism. These results suggest that, in contrast to the tight relationship between N and C metabolism in many microalgae, N and C metabolism could be uncoupled in marine macroalgae, which might be an important adaptation to the intertidal environment. [source] Spawning and recruitment patterns of major fish species in Bontanga Reservoir, Ghana, West AfricaLAKES & RESERVOIRS: RESEARCH AND MANAGEMENT, Issue 1 2010Kwadwo Kwarfo-Apegyah Abstract The spawning and recruitment patterns of the major Cichlid fish species, including Hemichromis fasciatus, Oreochromis niloticus, Sarotherodon galilaeus, Tilapia zillii and other species, Auchenoglanis occidentalis, Brycinus nurse, Clarias gariepinus and Marcusenius senegalensis were studied for 24 months in Bontanga Reservoir, Ghana, using length-based fish stock assessment approaches. The species spawned throughout the year, with two spawning pulses described as major and minor spawning seasons. The major spawning season occurred from March to September for the Cichlids, and from May to September for the other species. The minor spawning season, indicative of extended spawning, occurred from October to March for all the fish stocks. Fish spawning began with the onset of the rains in April/May, peaking by June/July, before the rainfall peak in August for all the fish stocks studied. Recruitment was found to occur throughout the year, with major and minor pulses coinciding with the major and minor spawning seasons. Accordingly, the most appropriate time for a possible closed fishing period appears to be from June to August, 1 month after the start of, and before the end of, the rains. The estimated mean standard length (Lm) for first time spawners of A. occidentalis, B. nurse, C. gariepinus and H. faciatus were 11.7, 12.7, 2.7 and 7.5 cm respectively. The estimated maturity,length ratio of 0.4 and 0.2 for O. niloticus, S. galilaeus and T. zillii were lower than the known 0.7 for normal growth, suggesting the tilapias matured faster, and at a smaller size, in the reservoir. Apparent sexual precocity associated with early maturity, year-round spawning and recruitment were some important adaptations found to have sustained the reservoir fisheries, even during high fishing pressures. For conservation and sustainable exploitation of the fisheries, instituting a closed fishing season, mesh size regulations, withdrawal rights and a community-based fishery management system are recommended. [source] |