Import System (import + system)

Distribution by Scientific Domains


Selected Abstracts


Super-channel in bacteria: function and structure of the macromolecule import system mediated by a pit-dependent ABC transporter

FEMS MICROBIOLOGY LETTERS, Issue 2 2001
Yumiko Mishima
Abstract In a soil isolate, Sphingomonas sp. A1, the transport of a macromolecule (alginate: 27 kDa) is mediated by a pit-dependent ATP-binding cassette (ABC) transporter. The transporter is different from other ABC transporters so far analyzed in that its function is dependent on a pit, a mouth-like organ formed on the cell surface only when cells are compelled to assimilate macromolecules, and in that it allows direct import of macromolecules into cells. The ABC transporter coupled with the pit, which functions as a funnel and/or concentrator of macromolecules to be imported, was designated the ,super-channel', and in this review, we discuss the three-dimensional structure and specific function of the ,super-channel' for macromolecule import found for the first time in a bacterium. [source]


Dissecting the components of quinine accumulation in Plasmodium falciparum

MOLECULAR MICROBIOLOGY, Issue 5 2008
Cecilia P. Sanchez
Summary Although quinine, the active ingredient of chinchona bark, has been used in the treatment of malaria for several centuries, there is little information regarding the interactions of this drug with the human malaria parasite Plasmodium falciparum. To better understand quinine's mode of action and the mechanism underpinning reduced responsiveness, we have investigated the factors that contribute to quinine accumulation by parasites that differ in their susceptibility to quinine. Interestingly, passive distribution, in accordance with the intracellular pH gradients, and intracellular binding could account for only a small fraction of the high amount of quinine accumulated by the parasites investigated. The results of trans -stimulation kinetics suggest that high accumulation of quinine is brought about by a carrier-mediated import system. This import system seems to be weakened in parasites with reduced quinine susceptibility. Other data show that polymorphisms within PfCRT are causatively linked with an increased verapamil-sensitive quinine efflux that, depending on the genetic background, resulted in reduced quinine accumulation. The polymorphisms within PfMDR1 investigated did not affect quinine accumulation. Our data are consistent with the model that several factors, including acidotropic trapping, binding to intracellular sites and carrier-mediated import and export transport systems, contribute to steady-state intracellular quinine accumulation. [source]


Dual targeting of Myxococcus xanthus protoporphyrinogen oxidase into chloroplasts and mitochondria and high level oxyfluorfen resistance

PLANT CELL & ENVIRONMENT, Issue 11 2004
S. JUNG
ABSTRACT Much attention has been paid to the signal sequences of eukaryotic protoporphyrinogen oxidases (protoxes); both the organelles targeted by protoxes and the role of protoxes in conferring resistance against protox-inhibiting herbicides, such as oxyfluorfen, have been examined. However, there have been no reports on the translocation of prokaryotic protoxes. This study investigated the targeting ability of Myxococcus xanthus protox in vitro and in vivo. In an in vitro translocation assay using a dual import system, M. xanthus protein was detected in chloroplasts and mitochondria, suggesting that the M. xanthus protox protein was targeted into both organelles. In order to confirm the in vitro dual targeting ability of M. xanthus, we used a stable transgenic strategy to investigate dual targeting in vivo. In transgenic rice plants overexpressing M. xanthus protox, M. xanthus protox antibody cross-reacted with proteins with predicted molecular masses of 50 kDa from both chloroplasts and mitochondria, and this in vivo transgene expression corresponded to a prominent increase in chloroplastic and mitochondrial protox activity. Seeds from the transgenic lines M4 and M7 germinated in solid Murashige and Skoog media of up to 500 µm of oxyfluorfen, whereas wild-type seeds did not germinate in 1 µm. After 4-week-old-rice plants were treated with oxyfluorfen for 3 d, lines M4 and M7 exhibited normal growth, whereas the wild-type line was severely bleached and necrotized. The herbicidal resistance is attributed to the insignificant accumulation of photodynamic protoporphyrin IX in cytosol because the high chloroplastic and mitochondrial protox activity in oxyfluorfen-treated transgenic lines, compared with that in oxyfluorfen-treated and untreated wild-type plants, metabolizes protoporphyrinogen IX to chlorophyll and heme. A practical application of the dual targeting of M. xanthus protox for obtaining outstanding resistance to peroxidizing herbicides is discussed. [source]