Home About us Contact | |||
Impact Craters (impact + crater)
Selected AbstractsA simulation of the hydrothermal response to the Chesapeake Bay bolide impactGEOFLUIDS (ELECTRONIC), Issue 3 2005W. E. SANFORD Abstract Groundwater more saline than seawater has been discovered in the tsunami breccia of the Chesapeake Bay Impact Crater. One hypothesis for the origin of this brine is that it may be a liquid residual following steam separation in a hydrothermal system that evolved following the impact. Initial scoping calculations have demonstrated that it is feasible such a residual brine could have remained in the crater for the 35 million years since impact. Numerical simulations have been conducted using the code HYDROTHERM to test whether or not conditions were suitable in the millennia following the impact for the development of a steam phase in the hydrothermal system. Hydraulic and thermal parameters were estimated for the bedrock underlying the crater and the tsunami breccia that fills the crater. Simulations at three different breccia permeabilities suggest that the type of hydrothermal system that might have developed would have been very sensitive to the permeability. A relatively low breccia permeability (1 × 10,16 m2) results in a system partitioned into a shallow water phase and a deeper superheated steam phase. A moderate breccia permeability (1 × 10,15 m2) results in a system with regionally extensive multiphase conditions. A relatively high breccia permeability (1 × 10,14 m2) results in a system dominated by warm-water convection cells. The permeability of the crater breccia could have had any of these values at given depths and times during the hydrothermal system evolution as the sediments compacted. The simulations were not able to take into account transient permeability conditions, or equations of state that account for the salt content of seawater. Results suggest, however, that it is likely that steam conditions existed at some time in the system following impact, providing additional evidence that is consistent with a hydrothermal origin for the crater brine. [source] Impact craters in the northern hemisphere of Mars: Layered ejecta and central pit characteristicsMETEORITICS & PLANETARY SCIENCE, Issue 10 2006Nadine G. Barlow Analysis of data in the revised catalog provides new details on the distribution and morphologic details of 6795 impact craters in the northern hemisphere of Mars. This report focuses on the ejecta morphologies and central pit characteristics of these craters. The results indicate that single-layer ejecta (SLE) morphology is most consistent with impact into an ice-rich target. Double-layer ejecta (DLE) and multiple-layer ejecta (MLE) craters also likely form in volatile-rich materials, but the interaction of the ejecta curtain and target-produced vapor with the thin Martian atmosphere may be responsible for the large runout distances of these ejecta. Pancake craters appear to be a modified form of double-layer craters where the thin outer layer has been destroyed or is unobservable at present resolutions. Pedestal craters are proposed to form in an icerich mantle deposited during high obliquity periods from which the ice has subsequently sublimated. Central pits likely form by the release of vapor produced by impact into ice-soil mixed targets. Therefore, results from the present study are consistent with target volatiles playing a dominant role in the formation of crater morphologies found in the Martian northern hemisphere. [source] Impact craters on small icy bodies such as icy satellites and comet nucleiMONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, Issue 2 2005M. J. Burchell ABSTRACT Laboratory data and the results of modelling are combined to predict the possible size of craters in icy bodies such as a comet nucleus. This is done in particular for the case of a a 370-kg mass impacting a body the size of the nucleus of comet 9P/Temple-1 at 10 km s,1. This reproduces the Deep Impact comet impact to occur in 2005, when a NASA spacecraft will observe at close range an impact on the comet nucleus of an object deployed from the main spacecraft. The predicted crater size depends not only on uncertainties in extrapolation from laboratory scale and the modelling in general, but also on assumptions made about the nature of the target. In particular, allowance is made for the full range of reasonable target porosities; this can significantly affect the outcome of the Deep Impact event. The range of predicted crater sizes covers some 7,30 m crater depth and some 50,150 m crater diameter. An increasingly porous target (i.e. one with a higher percentage of void space) will increase the depth of the crater but not necessarily the diameter, leading to the possibility of an impact event where much of the crater formation is in the interior of the crater, with work going into compaction of void space and some possible lateral growth of the crater below the surface entrance. Nevertheless, for a wide range of scenarios concerning the nature of the impact, the Deep Impact event should penetrate the surface to depths of a few tens of metres, accessing the immediate subsurface regions. In parallel to this, the same extrapolation methods are used to predict the size of impactors that may have caused the features observed on the surfaces of small bodies, e.g. the Saturnian satellite Phoebe and the nucleus of comet P/Wild-2. [source] Principal features of impact-generated hydrothermal circulation systems: mineralogical and geochemical evidenceGEOFLUIDS (ELECTRONIC), Issue 3 2005MIKHAIL V. NAUMOVArticle first published online: 14 JUL 200 Abstract Any hypervelocity impact generates a hydrothermal circulation system in resulting craters. Common characteristics of hydrothermal fluids mobilized within impact structures are considered, based on mineralogical and geochemical investigations, to date. There is similarity between the hydrothermal mineral associations in the majority of terrestrial craters; an assemblage of clay minerals,zeolites,calcite,pyrite is predominant. Combining mineralogical, geochemical, fluid inclusion, and stable isotope data, the distinctive characteristics of impact-generated hydrothermal fluids can be distinguished as follows: (i) superficial, meteoric and ground water and, possibly, products of dehydration and degassing of minerals under shock are the sources of hot water solutions; (ii) shocked target rocks are sources of the mineral components of the solutions; (iii) flow of fluids occurs mainly in the liquid state; (iv) high rates of flow are likely (10,4 to 10,3 m s,1); (v) fluids are predominantly aqueous and of low salinity; (vi) fluids are weakly alkaline to near-neutral (pH 6,8) and are supersaturated in silica during the entire hydrothermal process because of the strong predominance of shock-disordered aluminosilicates and fusion glasses in the host rocks; and (vii) variations in the properties of the circulating solutions, as well as the spatial distribution of secondary mineral assemblages are controlled by tempera ure gradients within the circulation cell and by a progressive cooling of the impact crater. Products of impact-generated hydrothermal processes are similar to the hydrothermal mineralization in volcanic areas, as well as in modern geothermal systems, but impacts are always characterized by a retrograde sequence of alteration minerals. [source] WATER RESOURCES OF THE CHUNCHUCMIL MAYA,GEOGRAPHICAL REVIEW, Issue 4 2000Sheryl Luzzadder-Beach ABSTRACT. Chunchucmil, on the Yucatán Peninsula, was densely populated in the Maya Late Classic period (ca. a.d. 550,830), even though it depends principally on groundwater. In the 1990s, hydrologic investigations were conducted to determine whether groundwater could have met domestic and agricultural needs. The region's groundwater is near the surface and is influenced by sea-level fluctuations; however, geochemical analysis revealed that groundwater quality is not affected by mixing with seawater. The potential exists for high and spatially extensive nitrate contamination in this karstic area, yet water-quality analyses revealed only moderate levels of nitrate in the groundwater. Agricultural limitations are imposed by chloride, total dissolved solids, and salinity, as indicated by electrical conductivity; domestic water use is limited by the presence of nitrate, sulfate, and chloride. Throughflow in the ring of cenotes (sinkholes) around the Chicxulub impact crater may explain the movement and spatial distribution of water-quality constituents in Chunchucmil's groundwater. [source] Geophysical survey of the proposed Tsenkher impact structure, Gobi Altai, MongoliaMETEORITICS & PLANETARY SCIENCE, Issue 3 2010Jens ORMÖ Extensive occurrences of brecciated rocks, mainly in the form of an ejecta blanket outside the elevated rim of the structure, support an explosive origin (e.g., cosmic impact, explosive volcanism). The host rocks in the area are mainly weakly magnetic, silica-rich sandstones, and siltstones. A near absence of surface exposures of volcanic rocks makes any major volcanic structures (e.g., caldera) unlikely. Likewise, the magnetic models exclude any large, subsurface, intrusive body. This is supported by an 8 mGal gravity low over the structure indicating a subsurface low density body. Instead, the best fit is achieved for a bowl-shaped structure with a slight central rise as expected for an impact crater of this size in mainly sedimentary target. The structure can be either root-less (i.e., impact crater) or rooted with a narrow feeder dyke with relatively higher magnetic susceptibility and density (i.e., volcanic maar crater). The geophysical signature, the solitary appearance, the predominantly sedimentary setting, and the comparably large size of the Tsenkher structure favor the impact crater alternative. However, until mineralogical/geochemical evidence for an impact is presented, the maar alternative remains plausible although exceptional as it would make the Tsenkher structure one of the largest in the world in an unusual setting for maar craters. [source] Rietveld analysis of X-ray powder diffraction patterns as a potential tool for the identification of impact-deformed carbonate rocksMETEORITICS & PLANETARY SCIENCE, Issue 11 2009Sarah A. Huson Entire XRD patterns, single peak profiles and Rietveld refined parameters of carbonate samples from the Sierra Madera impact crater, west Texas, unshocked equivalent samples from 95 miles north of the crater and the Mission Canyon Formation of southwest Montana and western Wyoming were used to evaluate the use of X-ray powder diffraction as a potential tool for distinguishing impact deformed rocks from unshocked and tectonically deformed rocks. At Sierra Madera dolostone and limestone samples were collected from the crater rim (lower shock intensity) and the central uplift (higher shock intensity). Unshocked equivalent dolostone samples were collected from well cores drilled outside of the impact crater. Carbonate rocks of the Mission Canyon Formation were sampled along a transect across the tectonic front of the Sevier and Laramide orogenic belts. Whereas calcite subjected to significant shock intensities at the Sierra Madera impact crater can be differentiated from tectonically deformed calcite from the Mission Canyon Formation using Rietveld refined peak profiles, weakly shocked calcite from the crater rim appears to be indistinguishable from the tectonically deformed calcite. In contrast, Rietveld analysis readily distinguishes shocked Sierra Madera dolomite from unshocked equivalent dolostone samples from outside the crater and tectonically deformed Mission Canyon Formation dolomite. [source] Uppermost impact fallback layer in the Bosumtwi crater (Ghana): Mineralogy, geochemistry, and comparison with Ivory Coast tektitesMETEORITICS & PLANETARY SCIENCE, Issue 4-5 2007Christian KOEBERL In one (LB-05) of 16 cores drilled into the lake sediments, the zone between the impact breccias and the post-impact sediments was penetrated, preserving the final, fine-grained impact fallback layer. This ,30 cm thick layer contains in the top 10 cm "accretionary" lapilli, microtektite-like glass spherules, and shocked quartz grains. Glass particles,mostly of splash form less than 1 mm size,make up the bulk of the grains (,70,78% by number) in the coarser size fraction (>125 ,m) of the top of the fallback layer. About one-third of all quartz grains in the uppermost part of the layer are shocked, with planar deformation features (PDFs); almost half of these grains are highly shocked, with 3 or more sets of PDFs. K-feldspar grains also occur and some show shock deformation. The abundance of shocked quartz grains and the average shock level as indicated by the number of sets of PDFs, for both quartz and K-feldspar, decrease with depth into the layer. The well-preserved glass spherules and fragments are chemically rather homogeneous within each particle, and also show relatively small variations between the various particles. On average, the composition of the fallback spherules from core LB-5B is very similar to the composition of Ivory Coast tektites and microtektites, with the exception of CaO contents, which are about 1.5 to 2 times higher in the fallback spherules. This is a rare case in which the uppermost fallback layer and the transition to the post-impact sediments has been preserved in an impact structure; its presence indicates that the impactite sequence at Bosumtwi is complete and that Bosumtwi is a very well-preserved impact crater. [source] Impactites as a random medium,Using variations in physical properties to assess heterogeneity within the Bosumtwi meteorite impact craterMETEORITICS & PLANETARY SCIENCE, Issue 4-5 2007Elizabeth L'HEUREUX The damage induced by impact results in extensive fracturing and mixing of target materials. We discuss here a means of using sonic velocity and density logs from two boreholes through the Bosumtwi crater fill and basement to estimate the degree of heterogeneity and fracturing within the impacted target, in order to understand the discrepancy between the large impedances derived from the log data and the nonreflective zone of impactites observed in seismic sections. Based on an analysis of the stochastic fluctuations in the log data, the Bosumtwi impactites are characterized by vertical scale lengths of 2,3 m. From the resolution of the seismic data over the crater, horizontal scale lengths are estimated at <12 m. The impactites therefore fall within the quasi-homogeneous scattering regime, i.e., seismic energy will propagate through the medium with little disruption. Scale lengths as small as these are observed in the fractured basement rocks of impact structures, whereas non-impact related crystalline environments are characterized by scale lengths an order of magnitude larger. Assuming that the high-frequency fluctuations observed in the log data are more sensitive to fracture distribution than petrology, this suggests that the small scale lengths observed within impact structures are characteristic of impact-induced damage, and could be used to estimate the extent of fracturing undergone by the rocks at any depth below an impact structure. [source] Target rocks, impact glasses, and melt rocks from the Lonar impact crater, India: Petrography and geochemistryMETEORITICS & PLANETARY SCIENCE, Issue 9-10 2005Shiloh Osae A representative set of target basalts, including the basalt flows excavated by the crater, and a variety of impact breccias and impact glasses, were analyzed for their major and trace element compositions. Impact glasses and breccias were found inside and outside the crater rim in a variety of morphological forms and shapes. Comparable geochemical patterns of immobile elements (e.g., REEs) for glass, melt rock and basalt indicates minimal fractionation between the target rocks and the impactites. We found only little indication of post-impact hydrothermal alteration in terms of volatile trace element changes. No clear indication of an extraterrestrial component was found in any of our breccias and impact glasses, indicating either a low level of contamination, or a non-chondritic or otherwise iridium-poor impactor. [source] An appraisal of the Serra da Cangalha impact structure using the Euler deconvolution methodMETEORITICS & PLANETARY SCIENCE, Issue 8 2005A. Adekunle ADEPELUMI The efficacy of the method has been evaluated using the aeromagnetic data obtained over the Serra da Cangalha impact crater, northeastern Brazil. The analyses of the data have provided characteristic Euler deconvolution signatures and structural indices associated with impact craters. Also, through the interpretation of the computed Euler solutions, our understanding of the structural features present around the impact structure has been enhanced. The Euler solutions obtained indicate shallow magnetic sources that are interpreted as possibly post-impact faults and a circular structure. The depth of these magnetic sources varies between 0.8 and 2.5 km, while the Precambrian basement depth was found at ,1.5 km. This is in good agreement with the estimates of the Precambrian basement depth of about 1.1 km, calculated using aeromagnetic data. The reliability of the depth solutions obtained through the implementation of the Euler method was confirmed through the use of the existing information available in the area and the result of previous studies. We find that the Euler depth solutions obtained in this study are consistent with the results obtained using other methods. [source] Earth Impact Effects Program: A Web-based computer program for calculating the regional environmental consequences of a meteoroid impact on EarthMETEORITICS & PLANETARY SCIENCE, Issue 6 2005Gareth S. COLLINS This paper details the observations, assumptions and equations upon which the program is based. It describes our approach to quantifying the principal impact processes that might affect the people, buildings, and landscape in the vicinity of an impact event and discusses the uncertainty in our predictions. The program requires six inputs: impactor diameter, impactor density, impact velocity before atmospheric entry, impact angle, the distance from the impact at which the environmental effects are to be calculated, and the target type (sedimentary rock, crystalline rock, or a water layer above rock). The program includes novel algorithms for estimating the fate of the impactor during atmospheric traverse, the thermal radiation emitted by the impact-generated vapor plume (fireball), and the intensity of seismic shaking. The program also approximates various dimensions of the impact crater and ejecta deposit, as well as estimating the severity of the air blast in both crater-forming and airburst impacts. We illustrate the utility of our program by examining the predicted environmental consequences across the United States of hypothetical impact scenarios occurring in Los Angeles. We find that the most wide-reaching environmental consequence is seismic shaking: both ejecta deposit thickness and air-blast pressure decay much more rapidly with distance than with seismic ground motion. Close to the impact site the most devastating effect is from thermal radiation; however, the curvature of the Earth implies that distant localities are shielded from direct thermal radiation because the fireball is below the horizon. [source] Structure and impact indicators of the Cretaceous sequence of the ICDP drill core Yaxcopoil-1, Chicxulub impact crater, MexicoMETEORITICS & PLANETARY SCIENCE, Issue 7 2004T. KENKMANN The Cretaceous rocks are investigated with respect to deformation features and shock metamorphism to better constrain the deformational overprint and the kinematics of the cratering process. The sequence displays variable degrees of impact-induced brittle damage and post-impact brittle deformation. The degree of tilting and faulting of the Cretaceous sequence was analyzed using 360°-core scans and dip-meter log data. In accordance with lithological information, these data suggest that the sedimentary sequence represents a number of structural units that are tilted and moved with respect to each other. Three main units and nine sub-units were discriminated. Brittle deformation is most intense at the top of the sequence and at 1300,1400 m. Within these zones, suevitic dikes, polymict clastic dikes, and impact melt rock dikes occur and may locally act as decoupling horizons. The degree of brittle deformation depends on lithology; massive dolomites are affected by penetrative faulting, while stratified calcarenites and bituminous limestones display localized faulting. The deformation pattern is consistent with a collapse scenario of the Chicxulub transient crater cavity. It is believed that the Cretaceous sequence was originally located outside the transient crater cavity and eventually moved downward and toward the center to its present position between the peak ring and the crater rim, thereby separating into blocks. Whether or not the stack of deformed Cretaceous blocks was already displaced during the excavation process remains an open question. The analysis of the deformation microstructure indicates that a shock metamorphic overprint is restricted to dike injections with an exception of the so called "paraconglomerate." Abundant organic matter in the Yax-1 core was present before the impact and was mobilized by impact-induced heating and suggests that >12 km3 of organic material was excavated during the cratering process. [source] The clay mineralogy of sediments related to the marine Mjølnir impact craterMETEORITICS & PLANETARY SCIENCE, Issue 10 2003Henning DYPVIK It was formed about 142 ± 2.6 Myr ago by the impact of a 1,2 km asteroid into the shallow shelf clays of the Hekkingen Formation and the underlying Triassic to Jurassic sedimentary strata. A core recovered from the central high within the crater contains slump and avalanche deposits from the collapse of the transient crater and central high. These beds are overlain by gravity flow conglomerates, with laminated shales and marls on top. Here, impact and post-impact deposits in this core are studied with focus on clay mineralogy obtained from XRD decomposition and simulation analysis methods. The clay-sized fractions are dominated by kaolinite, illite, mixed-layered clay minerals and quartz. Detailed analyses showed rather similar composition throughout the core, but some noticeable differences were detected, including varying crystal size of kaolinite and different types of illites and illite/smectite. These minerals may have been formed by diagenetic changes in the more porous/fractured beds in the crater compared to time-equivalent beds outside the crater rim. Long-term post-impact changes in clay mineralogy are assumed to have been minor, due to the shallow burial depth and minor thermal influence from impact-heated target rocks. Instead, the clay mineral assemblages, especially the abundance of chlorite, reflect the impact and post-impact reworking of older material. Previously, an ejecta layer (the Sindre Bed) was recognized in a nearby well outside the crater, represented by an increase in smectite-rich clay minerals, genetically equivalent to the smectite occurring in proximal ejecta deposits of the Chicxulub crater. Such alteration products from impact glasses were not detected in this study, indicating that little, if any, impact glass was deposited within the upper part of the crater fill. Crater-fill deposits inherited their mineral composition from Triassic and Jurassic sediments underlying the impact site. [source] The Sirente crater field, ItalyMETEORITICS & PLANETARY SCIENCE, Issue 11 2002Jens ORMö They are located in the Sirente plain within the mountains of the Abruzzo region, central Italy. The craters are distributed in a field 450 m long and 400 m wide. This field consists of ,17 smaller craters close to a larger main crater. The main crater is located in the southern end of the crater field and is 140 m long and 115 m wide, measured rim-to-rim. It has a well-developed, saddle-shaped rim that rises at a maximum 2.2 m above the surrounding plain. Radiocarbon dating of the target surface preserved below the rim gave a calibrated age of formation at about a.d. 412 (1650 ± 40 radiocarbon years b.p.). This young age is consistent with the apparent little modification of the rim. The morphology of the main crater and its relation to a crater field strongly points to its origin by impact from a projectile that broke up during its passage through the atmosphere. Quartz is very rare in the target and no planar deformation features have been found so far. The rim material and the upper 4 m of the main crater infill are impregnated with ferric oxides, which gives a more reddish colour compared to the other sediments of the plain. Rusty crusts with high Fe and Mn content occur in the rim material, but have not been found in the plain's sediments. Some of these crusts can be separated by magnet, and have sporadic micron-sized Ni-rich granules. The main crater is in the size range of the craters with explosive dispersion of the projectile and has many features comparable to both large experimental and meteoritic impact craters formed in loose sediments. We suggest that this crater represents a rare example of well-preserved, small impact crater formed in unconsolidated target materials. [source] Identification of shocked quartz by scanning cathodoluminescence imagingMETEORITICS & PLANETARY SCIENCE, Issue 6 2001Sam Boggs Jr. These lamellae appear as remarkably straight, thin, planar features (microstructures) in sets within which lamellae are essentially parallel to each other and spaced , 20 ,m apart. Two or more intersecting sets are typically present. Shock lamellae are commonly recognized and identified by optical methods, by use of the transmission electron microscope (TEM), and by etching polished sections and subsequent examination with a scanning electron microscope (SEM) operated in the secondary electron mode. We present here a method for observing planar microstructures in shocked quartz by using a cathodoluminescence (CL) detector attached to a SEM. The method relies on the fact that planar microstructures in quartz arising as a result of shock display no CL whatever; thus, they show up as distinct, thin, black lines on otherwise luminescent quartz grains. We used scanning CL imaging to study shocked quartz from the Ries Crater, Germany, a well-known impact crater of Miocene age. We demonstrate that shock-produced planar microstructures are clearly displayed in SEM-CL images and can be distinguished from microfractures generated by tectonism, and subsequently filled with quartz, and other similar features not related to impact events. The SEM-CL method provides a powerful supplement to other methods of identifying shocked quartz. It commonly provides better spatial resolution than does standard optical methods, and does not require etching of quartz grains. Further, it is easier and faster to use than are TEM methods, although it is not capable of the fine-scale defect analysis possible with TEM. [source] A study of candidate marine target impact craters in Arabia Terra, MarsMETEORITICS & PLANETARY SCIENCE, Issue 6 2010Germari de VILLIERS Arabia Terra is a region on Mars that straddles the crustal dichotomy, and several proposed shorelines are located in the area. Shallow marine impact craters on Mars likely would exhibit features like those on Earth, including characteristic morphological features that are distinctly different from that of craters formed on land. Common attributes of terrestrial marine impact craters include features of wet mass movement such as gravity slumps and debris flows; radial gullies leading into the crater depression; resurge deposits and blocks of dislocated materials; crater rim collapse or breaching of the crater wall; a central peak terrace or peak ring terrace; and subdued topography (an indicator of both age and possible flood inundation immediately following impact). In this article, these features have been used to evaluate craters on Mars as to a possible marine origin. This study used a simple quantification system to approximately judge and rank shallow marine impact crater candidates based on features observed in terrestrial analogs. Based on the quantification system, 77 potential shallow marine impact craters were found within an area bounded by 20°N and 40°N as well as 20°W and 20°E. Nine exemplary candidates were ranked with total scores of 70% or more. In a second, smaller study area, impact craters of approximately similar size and age were evaluated as a comparison and average total scores are 35%, indicating that there is some morphological difference between craters inside and outside the proposed shorelines. Results of this type of study are useful in helping to develop a general means of classification and characterization of potential marine craters. [source] Polygonal impact craters in Argyre region, Mars: Implications for geology and cratering mechanicsMETEORITICS & PLANETARY SCIENCE, Issue 10 2008T. ÖHMAN Such polygonal impact craters (PICs) are controlled by pre-existing target structures, mainly faults or other similar planes of weakness. In the Argyre region, Mars, PICs comprise , 17% of the total impact crater population (>7 km in diameter), and PICs are relatively more common in older geologic units. Their formation is mainly controlled by radial fractures induced by the Argyre and Ladon impact basins, and to a lesser extent by the basin-concentric fractures. Also basin-induced conjugate shear fractures may play a role. Unlike the PICs, ridges and graben in the Argyre region are mostly controlled by Tharsis-induced tectonism, with the ridges being concentric and graben radial to Tharsis. Therefore, the PICs primarily reflect an old impact basin-centered tectonic pattern, whereas Tharsis-centered tectonism responsible for the graben and the ridges has only minor influence on the PIC rim orientations. According to current models of PIC formation, complex PICs should form through a different mechanism than simple PICs, leading to different orientations of straight rim segments. However, when simple and complex PICs from same areas are studied, no statistically significant difference can be observed. Hence, in addition to enhanced excavation parallel to the strike of fractures (simple craters) and slumping along the fracture planes (complex craters), we propose a third mechanism involving thrusting along the fracture planes. This model is applicable to both simple and small complex craters in targets with some dominating orientations of structural weakness. [source] An international and multidisciplinary drilling project into a young complex impact structure: The 2004 ICDP Bosumtwi Crater Drilling Project,An overviewMETEORITICS & PLANETARY SCIENCE, Issue 4-5 2007Christian KOEBERL It is the source crater of the Ivory Coast tektites. The structure was excavated in 2.1,2.2 Gyr old metasediments and metavolcanics of the Birimian Supergroup. A drilling project was conceived that would combine two major scientific interests in this crater: 1) to obtain a complete paleoenvironmental record from the time of crater formation about one million years ago, at a near-equatorial location in Africa for which very few data are available so far, and 2) to obtain a complete record of impactites at the central uplift and in the crater moat, for ground truthing and comparison with other structures. Within the framework of an international and multidisciplinary drilling project led by the International Continental Scientific Drilling Program (ICDP), 16 drill cores were obtained from June to October 2004 at six locations within Lake Bosumtwi, which is 8.5 km in diameter. The 14 sediment cores are currently being investigated for paleoenvironmental indicators. The two impactite cores LB-07A and LB-08A were drilled into the deepest section of the annular moat (540 m) and the flank of the central uplift (450 m), respectively. They are the main subject of this special issue of Meteoritics & Planetary Science, which represents the first detailed presentations of results from the deep drilling into the Bosumtwi impactite sequence. Drilling progressed in both cases through the impact breccia layer into fractured bedrock. LB-07A comprises lithic (in the uppermost part) and suevitic impact breccias with appreciable amounts of impact melt fragments. The lithic clast content is dominated by graywacke, besides various metapelites, quartzite, and a carbonate target component. Shock deformation in the form of quartz grains with planar microdeformations is abundant. First chemical results indicate a number of suevite samples that are strongly enriched in siderophile elements and Mg, but the presence of a definite meteoritic component in these samples cannot be confirmed due to high indigenous values. Core LB-08A comprises suevitic breccia in the uppermost part, followed with depth by a thick sequence of graywacke-dominated metasediment with suevite and a few granitoid dike intercalations. It is assumed that the metasediment package represents bedrock intersected in the flank of the central uplift. Both 7A and 8A suevite intersections differ from suevites outside of the northern crater rim. Deep drilling results confirmed the gross structure of the crater as imaged by the pre-drilling seismic surveys. Borehole geophysical studies conducted in the two boreholes confirmed the low seismic velocities for the post-impact sediments (less than 1800 m/s) and the impactites (2600,3300 m/s). The impactites exhibit very high porosities (up to 30 vol%), which has important implications for mechanical rock stability. The statistical analysis of the velocities and densities reveals a seismically transparent impactite sequence (free of prominent internal reflections). Petrophysical core analyses provide no support for the presence of a homogeneous magnetic unit (= melt breccia) within the center of the structure. Borehole vector magnetic data point to a patchy distribution of highly magnetic rocks within the impactite sequence. The lack of a coherent melt sheet, or indeed of any significant amounts of melt rock in the crater fill, is in contrast to expectations from modeling and pre-drilling geophysics, and presents an interesting problem for comparative studies and requires re-evaluation of existing data from other terrestrial impact craters, as well as modeling parameters. [source] Impact craters in the northern hemisphere of Mars: Layered ejecta and central pit characteristicsMETEORITICS & PLANETARY SCIENCE, Issue 10 2006Nadine G. Barlow Analysis of data in the revised catalog provides new details on the distribution and morphologic details of 6795 impact craters in the northern hemisphere of Mars. This report focuses on the ejecta morphologies and central pit characteristics of these craters. The results indicate that single-layer ejecta (SLE) morphology is most consistent with impact into an ice-rich target. Double-layer ejecta (DLE) and multiple-layer ejecta (MLE) craters also likely form in volatile-rich materials, but the interaction of the ejecta curtain and target-produced vapor with the thin Martian atmosphere may be responsible for the large runout distances of these ejecta. Pancake craters appear to be a modified form of double-layer craters where the thin outer layer has been destroyed or is unobservable at present resolutions. Pedestal craters are proposed to form in an icerich mantle deposited during high obliquity periods from which the ice has subsequently sublimated. Central pits likely form by the release of vapor produced by impact into ice-soil mixed targets. Therefore, results from the present study are consistent with target volatiles playing a dominant role in the formation of crater morphologies found in the Martian northern hemisphere. [source] Chesapeake Bay impact structure: Morphology, crater fill, and relevance for impact structures on MarsMETEORITICS & PLANETARY SCIENCE, Issue 10 2006J. Wright Horton Jr. It provides an accessible analog for studying impact processes in layered and wet targets on volatile-rich planets. The CBIS formed in a layered target of water, weak clastic sediments, and hard crystalline rock. The buried structure consists of a deep, filled central crater, 38 km in width, surrounded by a shallower brim known as the annular trough. The annular trough formed partly by collapse of weak sediments, which expanded the structure to ,85 km in diameter. Such extensive collapse, in addition to excavation processes, can explain the "inverted sombrero" morphology observed at some craters in layered targets. The distribution of crater-fill materials in the CBIS is related to the morphology. Suevitic breccia, including pre-resurge fallback deposits, is found in the central crater. Impact-modified sediments, formed by fluidization and collapse of water-saturated sand and silt-clay, occur in the annular trough. Allogenic sediment-clast breccia, interpreted as ocean-resurge deposits, overlies the other impactites and covers the entire crater beneath a blanket of postimpact sediments. The formation of chaotic terrains on Mars is attributed to collapse due to the release of volatiles from thick layered deposits. Some flat-floored rimless depressions with chaotic infill in these terrains are impact craters that expanded by collapse farther than expected for similar-sized complex craters in solid targets. Studies of crater materials in the CBIS provide insights into processes of crater expansion on Mars and their links to volatiles. [source] Modification of impact craters in the northern plains of Mars: Implications for Amazonian climate historyMETEORITICS & PLANETARY SCIENCE, Issue 10 2006M. A. Kreslavsky Two of the 130 craters have unusually rough ejecta; they are deep, have steep walls, and are apparently the youngest in the population. Icy mantles filling the local subkilometer-scale topographic lows is the main contribution to ejecta smoothing, which occurs at a time scale on the order of tens of Myr. Wall degradation and crater shallowing generally occur at longer time scales, comparable to the duration of the Amazonian period. Many craters are shallow due to filling of the crater with specific ice-rich material of uncertain origin. We use our collected data to infer the nature of the past climate back through the Amazonian, a period prior to ,10,20 Myr ago, when orbital parameter solutions are chaotic and one must rely on geological data to infer climate conditions. We conclude that moderately high obliquity and wide obliquity variations were probable during the last 40,160 Myr. We tentatively conclude that high obliquity peaks (>40,45°) may have occurred episodically through the last 210,430 Myr. A sharp step in the frequency distribution of wall steepness at 20° may indicate a geologically long period prior to that time where obliquity never exceeded 40,45°. [source] Microstructural study of micron-sized craters simulating Stardust impacts in aluminum 1100 targetsMETEORITICS & PLANETARY SCIENCE, Issue 2 2006Hugues Leroux First, scanning electron microscopy (SEM) and energy dispersive X-ray spectroscopy (EDS) were used to study the morphology of the impact craters and the bulk composition of the residues left by soda-lime glass impactors. A more detailed structural and compositional study of impactor remnants was then performed using transmission electron microscopy (TEM), EDS, and electron diffraction methods. The TEM samples were prepared by focused ion beam (FIB) methods. This technique proved to be especially valuable in studying impact crater residues and impact crater morphology. Finally, we also showed that infrared microscopy (IR) can be a quick and reliable tool for such investigations. The combination of all of these tools enables a complete microscopic characterization of the craters. [source] An appraisal of the Serra da Cangalha impact structure using the Euler deconvolution methodMETEORITICS & PLANETARY SCIENCE, Issue 8 2005A. Adekunle ADEPELUMI The efficacy of the method has been evaluated using the aeromagnetic data obtained over the Serra da Cangalha impact crater, northeastern Brazil. The analyses of the data have provided characteristic Euler deconvolution signatures and structural indices associated with impact craters. Also, through the interpretation of the computed Euler solutions, our understanding of the structural features present around the impact structure has been enhanced. The Euler solutions obtained indicate shallow magnetic sources that are interpreted as possibly post-impact faults and a circular structure. The depth of these magnetic sources varies between 0.8 and 2.5 km, while the Precambrian basement depth was found at ,1.5 km. This is in good agreement with the estimates of the Precambrian basement depth of about 1.1 km, calculated using aeromagnetic data. The reliability of the depth solutions obtained through the implementation of the Euler method was confirmed through the use of the existing information available in the area and the result of previous studies. We find that the Euler depth solutions obtained in this study are consistent with the results obtained using other methods. [source] Integrated deep drilling, coring, downhole logging, and data management in the Chicxulub Scientific Drilling Project (CSDP), MexicoMETEORITICS & PLANETARY SCIENCE, Issue 6 2004Lothar Wohlgemuth To date, a continuous scientific sampling of large impact craters from cover rocks to target material has only seldom been performed. The first project to deep-drill and core into one of the largest and well-preserved terrestrial impact structures was executed in the winter of 2001/2002 in the 65 Myr-old Chicxulub crater in Mexico using integrated coring sampling and in situ measurements. The combined use of different techniques allows a three-dimensional insight and a better understanding of impact processes. Here, we report the integration of conventional rotary drilling techniques with wireline mining coring technology that was applied to drill the 1510 m-deep Yaxcopoil-1 (Yax-1) well about 40 km southwest of Mérida, Yucatán, Mexico. During the course of the project, we recovered approximately 900 m of intact core samples including the transitions of reworked ejecta to post-impact sediments, and that one from large blocks of tilted target material to impact-generated rocks, i.e., impact melt breccias and suevites. Coring was complemented by wireline geophysical measurements to obtain a continuous set of in situ petrophysical data of the borehole walls. The data acquired is comprised of contents of a natural radioactive element, velocities of compressional sonic waves, and electrical resistivity values. All the digital data sets, including technical drilling parameters, initial scientific sample descriptions, and 360° core pictures, were distributed during the course of the operations via Internet and were stored in the ICDP Drilling Information System (http:www.icdp-online.org), serving the global community of cooperating scientists as a basic information service. [source] Observations at terrestrial impact structures: Their utility in constraining crater formationMETEORITICS & PLANETARY SCIENCE, Issue 2 2004Richard A. F. Grieve Local geology of the target area tends to be of secondary importance, and the net result is that impacts of similar size on a given planetary body produce similar results. This is the essence of the utility of observations at impact craters, particularly terrestrial craters, in constraining impact processes. Unfortunately, there are few well-documented results from systematic contemporaneous campaigns to characterize specific terrestrial impact structures with the full spectrum of geoscientific tools available at the time. Nevertheless, observations of the terrestrial impact record have contributed substantially to fundamental properties of impact. There is a beginning of convergence and mutual testing of observations at terrestrial impact structures and the results of modeling, in particular from recent hydrocode models. The terrestrial impact record provides few constraints on models of ejecta processes beyond a confirmation of the involvement of the local substrate in ejecta lithologies and shows that Z-models are, at best, first order approximations. Observational evidence to date suggests that the formation of interior rings is an extension of the structural uplift process that occurs at smaller complex impact structures. There are, however, major observational gaps and cases, e.g., Vredefort, where current observations and hydrocode models are apparently inconsistent. It is, perhaps, time that the impact community as a whole considers documenting the existing observational and modeling knowledge gaps that are required to be filled to make the intellectual breakthroughs equivalent to those of the 1970s and 1980s, which were fueled by observations at terrestrial impact structures. Filling these knowledge gaps would likely be centered on the later stages of formation of complex and ring structures and on ejecta. [source] The Sirente crater field, ItalyMETEORITICS & PLANETARY SCIENCE, Issue 11 2002Jens ORMö They are located in the Sirente plain within the mountains of the Abruzzo region, central Italy. The craters are distributed in a field 450 m long and 400 m wide. This field consists of ,17 smaller craters close to a larger main crater. The main crater is located in the southern end of the crater field and is 140 m long and 115 m wide, measured rim-to-rim. It has a well-developed, saddle-shaped rim that rises at a maximum 2.2 m above the surrounding plain. Radiocarbon dating of the target surface preserved below the rim gave a calibrated age of formation at about a.d. 412 (1650 ± 40 radiocarbon years b.p.). This young age is consistent with the apparent little modification of the rim. The morphology of the main crater and its relation to a crater field strongly points to its origin by impact from a projectile that broke up during its passage through the atmosphere. Quartz is very rare in the target and no planar deformation features have been found so far. The rim material and the upper 4 m of the main crater infill are impregnated with ferric oxides, which gives a more reddish colour compared to the other sediments of the plain. Rusty crusts with high Fe and Mn content occur in the rim material, but have not been found in the plain's sediments. Some of these crusts can be separated by magnet, and have sporadic micron-sized Ni-rich granules. The main crater is in the size range of the craters with explosive dispersion of the projectile and has many features comparable to both large experimental and meteoritic impact craters formed in loose sediments. We suggest that this crater represents a rare example of well-preserved, small impact crater formed in unconsolidated target materials. [source] An improved shadow measurement technique for constraining the morphometry of simple impact cratersMETEORITICS & PLANETARY SCIENCE, Issue 4 2002John E. Chappelow This technique, however, only yields the "true" crater depth if the shadow transects the crater center where the floor is deepest. In the past, attempts have been made to circumvent this limitation by choosing only craters where the shadow tip lies very near the crater center; but this approach may introduce serious artifacts that adversely affect the slope of the regressed depth vs. diameter data and its variance. Here we introduce an improved method for deriving depth information from shadow measurements that considers three basic shape variations of simple craters: paraboloidal, conical, and flat-floored. We show that the shape of the cast shadow can be used to constrain crater shape and we derive improved equations for finding the depths of these simple craters. [source] |