Imaging Properties (imaging + property)

Distribution by Scientific Domains


Selected Abstracts


A field test of imaging properties of rotational invariants of the magnetotelluric impedance tensor

GEOPHYSICAL PROSPECTING, Issue 3 2005
László Szarka
ABSTRACT A part of the Békés Basin (an extensional sub-basin of the Pannonian Basin, where the basement under thick Pannonian sediments is well known from deep boreholes and from seismic measurements, and where many magnetotelluric (MT) soundings have been carried out for frequencies ranging from 1 to 10,3 Hz) was selected as a test area to assess the imaging performances of various apparent-resistivity definitions computed with rotational invariants of either the real part of the complex impedance tensor, or its imaginary part, or both. A comparison (based on earlier 3D numerical studies) has been made between the magnetotelluric images obtained in this way and the depths to the high-resistivity basement, as known from boreholes and seismic investigations. The correlation coefficient between the series of basement depth values at 39 MT sites and the apparent-resistivity values was found to be stronger and high correlation appeared at a shorter period when it was computed with apparent resistivities based on the real tensor rather than with apparent resistivities based on the imaginary tensor. In the light of our studies, ,ReZ and the impedance phase seem to be more informative than any other combination of magnetotelluric interpretation parameters. [source]


Application of Histomorphometric Methods to the Study of Bone Repair,

JOURNAL OF BONE AND MINERAL RESEARCH, Issue 10 2005
Louis C Gerstenfeld
Abstract ABSTRACT: Standardized methods for the histomorphometric assessment of bone are essential features of most studies of metabolic bone diseases and their treatments. These methodologies were developed to assess coupled remodeling, focusing primarily on osteoblasts and osteoclasts, the anabolic and catabolic rates of these cells, and structural features of mature bone. Research studies on bone healing and the development of new therapeutic approaches for the enhancement of bone repair also require a comprehensive understanding of the basic cellular and tissue level mechanisms that underlie these processes. However, the histological methods developed for metabolic bone disease studies are not completely suitable for studies of bone repair because they are based on assumptions that there is little variation in tissue composition within a sample of bone and not generally designed to quantify other types of tissues, such as cartilage, that contribute to bone healing. These techniques also do not provide tissue-based structural measurements that are relatable to the specific types of biomechanical and radiographic structural assessments that are used to determine rates of bone healing. These deficiencies in current histological approaches therefore point to the need to establish standardized criteria for the histomorphometric assessments that are specifically adapted for the study of bone repair in models of fracture healing and bone regeneration. In this Perspective, we outline what we believe to be the specific structural, tissue. and cellular aspects that need to be addressed to establish these standardized criteria for the histomorphometric assessment of bone repair. We present the specific technical considerations that need to be addressed to appropriately sample repair tissues to obtain statistically meaningful results and suggest specific procedures and definitions of nomenclatures for the application of this technology to bone repair. Finally, we present how aspects of histomorphometric measurements of bone repair can be related to biomechanical and radiographic imaging properties that functionally define rates of bone healing, and thus, how these tools can be used to provide corroborating data. [source]


Specimen-induced distortions in light microscopy

JOURNAL OF MICROSCOPY, Issue 1 2007
M. SCHWERTNER
Summary Specimen-induced aberrations affect the imaging properties in optical 3D microscopy, especially when high numerical aperture lenses are used. Studies on aberrations are often properly concerned with the degradation of image quality such as compromised resolution or reduced signal intensity. Apart from these, aberration effects can also introduce geometric image distortions. The effects, discussed here are particularly strong when thick biological specimens are investigated. Using a high numerical aperture interferometer, we measured wavefront aberrations in transmission mode and quantified geometric distortions associated with specimen-induced aberrations. This assessment for a range of biological specimens allows estimation of the accuracy of spatial measurements. The results show that high-resolution spatial measurements can be significantly compromised by specimen-induced aberrations. [source]


The pair-functional method for direct solution of molecular structures.

ACTA CRYSTALLOGRAPHICA SECTION A, Issue 2 2001

The new pair-functional direct method has been implemented and tested. Like the Patterson function, the pairing force has valuable imaging properties at high resolution. Two simple iterative algorithms were designed to refine on the total pair potential and the normalized intensity correlation coefficient of an atomic model. The first algorithm is a peak-picking method which selects the best-paired high peaks from a density map and then uses the strong reflections to generate a new Fourier filtered map. The second algorithm, the pair-and-square method, uses a tangent formula step instead of the Fourier and is a little more efficient. Computational experiments on a point-atom grid model, with perfect data, reached exact ab initio solutions for up to 600 atoms. Point-atom models were also solved by searching for reduced structures that contained as few as one quarter of the atoms. Seeded searches, guided by a small known fragment, solved up to 30000 atoms on the grid. Realistic tests on actual molecules showed that Sheldrick's [Acta Cryst. (1990), A46, 467,473] test structures of 50,200 atoms can be solved under a variety of conditions. [source]