Home About us Contact | |||
Image Representation (image + representation)
Selected AbstractsAdaptive Logarithmic Mapping For Displaying High Contrast ScenesCOMPUTER GRAPHICS FORUM, Issue 3 2003F. Drago We propose a fast, high quality tone mapping technique to display high contrast images on devices with limited dynamicrange of luminance values. The method is based on logarithmic compression of luminance values, imitatingthe human response to light. A bias power function is introduced to adaptively vary logarithmic bases, resultingin good preservation of details and contrast. To improve contrast in dark areas, changes to the gamma correctionprocedure are proposed. Our adaptive logarithmic mapping technique is capable of producing perceptually tunedimages with high dynamic content and works at interactive speed. We demonstrate a successful application of ourtone mapping technique with a high dynamic range video player enabling to adjust optimal viewing conditions forany kind of display while taking into account user preference concerning brightness, contrast compression, anddetail reproduction. Categories and Subject Descriptors (according to ACM CCS): I.3.3 [Image Processing and Computer Vision]: Image Representation [source] Vision-only control and guidance for aircraftJOURNAL OF FIELD ROBOTICS (FORMERLY JOURNAL OF ROBOTIC SYSTEMS), Issue 10 2006Alison A. Proctor An unmanned aerial vehicle usually carries an array of sensors whose output is used to estimate vehicle attitude, velocity, and position. This paper details the development of guidance, navigation, and control strategies for a glider, which is capable of flying a terminal trajectory to a known fixed object using only a single vision sensor. Controlling an aircraft using only vision presents two unique challenges: First, absolute state measurements are not available from a single image; and second, the images must be collected and processed at a high rate to achieve the desired controller performance. The image processor utilizes an integral image representation and a rejective cascade filter to find and classify simple features in the images, reducing the image to the most probable pixel location of the destination object. Then, an extended Kalman filter uses measurements obtained from a single image to estimate the states that would otherwise be unobservable in a single image. In this research, the flights are constrained to keep the destination object in view. The approach is validated through simulation. Finally, experimental data from autonomous flights of a glider, instrumented only with a single nose-mounted camera, intercepting a target window during short low-level flights, are presented. © 2006 Wiley Periodicals, Inc. [source] Relationships between perceived features and similarity of images: A test of Tversky's contrast modelJOURNAL OF THE AMERICAN SOCIETY FOR INFORMATION SCIENCE AND TECHNOLOGY, Issue 10 2007Abebe Rorissa The rapid growth of the numbers of images and their users as a result of the reduction in cost and increase in efficiency of the creation, storage, manipulation, and transmission of images poses challenges to those who organize and provide access to images. One of these challenges is similarity matching, a key component of current content-based image retrieval systems. Similarity matching often is implemented through similarity measures based on geometric models of similarity whose metric axioms are not satisfied by human similarity judgment data. This study is significant in that it is among the first known to test Tversky's contrast model, which equates the degree of similarity of two stimuli to a linear combination of their common and distinctive features, in the context of image representation and retrieval. Data were collected from 150 participants who performed an image description and a similarity judgment task. Structural equation modeling, correlation, and regression analyses confirmed the relationships between perceived features and similarity of objects hypothesized by Tversky. The results hold implications for future research that will attempt to further test the contrast model and assist designers of image organization and retrieval systems by pointing toward alternative document representations and similarity measures that more closely match human similarity judgments. [source] Imaging geophysical data,taking the viewer into accountARCHAEOLOGICAL PROSPECTION, Issue 1 2004T. J. Dennis Abstract A common way of presenting geophysical data from two-dimensional sources is as a grey-scale image. Some theoretical background to discrete image representation is described, and the deleterious effects of inappropriate (too sparse) sampling and display of such images discussed in an archaeological context. In high-quality images, such as magazine illustrations or digital television, the sampling densities can be sufficiently high to avoid the appearance of artefacts. Geophysical images in contrast are often sampled at very low densities; if the effective area of each sample is significantly less than the sample spacing, then the classic effect called ,aliasing' in communication engineering, caused by the violation of Nyquist's criterion, will be seen. Knowledge of the sensor's footprint can be used to select an appropriate sample density, and so minimize this source of distortion. To maximize the visibility of what may be low-contrast structures immersed in a high level of background noise, it is helpful also to consider the bandpass nature of the spatial frequency response of the human visual system. The non-linear phenomenon of visual masking is shown to influence the choice on presentation methods. Copyright © 2004 John Wiley & Sons, Ltd. [source] |