Immunoreactive Fibers (immunoreactive + fiber)

Distribution by Scientific Domains


Selected Abstracts


Vasotocin and mesotocin in the brains of amphibians: State of the art

MICROSCOPY RESEARCH AND TECHNIQUE, Issue 3 2001
Wilhelmus J.A.J. Smeets
Abstract Immunohistochemical studies during the last decade have revealed elaborate systems of vasotocinergic (AVT) and mesotocinergic (MST) neuronal elements in the brain of a variety of amphibians including anurans, urodeles, and gymnophionans. Apart from a well-developed hypothalamo-hypophysial system, the antibodies demonstrated the existence of extrahypothalamic AVT- and MST-immunoreactive cell groups as well as extensive extrahypothalamic networks of immunoreactive fibers. The wide distribution of AVT- and MST-immunoreactive fibers throughout the brains of amphibians suggests that the two neuropeptidergic systems are involved not only in hypothalamo-hypophysial interactions, but also in a variety of other brain functions. Moreover, there is now evidence that sex-related differences occur in amphibians as previously shown for amniotes. It should be noted, however, that substantial variation occurs in the relative densities of AVT- and MST-immunoreactive fibers and number of cells between species, even within a single order of amphibians. Similar observations have been made in other classes of vertebrates and prompt us, therefore, to critically evaluate conclusions with respect to specific functions of AVT and MST in the central nervous system of vertebrates. Microsc. Res. Tech. 54:125,136, 2001. © 2001 Wiley-Liss, Inc. [source]


Distribution of P2X3 -immunoreactive fibers in hairy and glabrous skin of the rat

THE JOURNAL OF COMPARATIVE NEUROLOGY, Issue 6 2009
Anna M.W. Taylor
Abstract The skin is innervated by two populations of unmyelinated sensory fibers, the peptidergic and nonpeptidergic, which transmit nociceptive information to the central nervous system. The peptidergic population expresses neuropeptides such as substance P (SP) and calcitonin gene-related peptide (CGRP) and has both cutaneous and visceral targets. The nonpeptidergic population expresses the purinergic receptor P2X3, binds the isolectin B4 (IB4), and innervates mainly the epidermis. To date, the peptidergic nociceptor population in cutaneous tissue of the rat has been well characterized, whereas the nonpeptidergic innervation pattern has lacked an adequate description. To this aim, we used light microscopic immunocytochemistry to investigate the pattern of P2X3 -immunoreactive (-IR) fiber innervation of both hairy and glabrous skin from male Sprague-Dawley rats. Our results show extensive P2X3 -IR fibers throughout the upper and lower dermis. Thick bundles of P2X3 -IR fibers were found to run in parallel with the dermal-epidermal junction and projected multiple thin collateral axons that penetrated the epidermal layer, creating a dense network of innervation throughout the entire epidermis. The distribution of P2X3 -IR fibers in the epidermis was far more extensive than the distribution of CGRP-IR fibers. P2X3 -IR fibers also innervate hair follicles but were rarely found in close proximity to glands and blood vessels. The present results suggest a primary role for P2X3 -IR fibers in the detection of noxious stimuli in cutaneous tissue and provide an anatomical basis for future studies examining a possible functionally distinct role of nonpeptidergic nociceptors in the transmission of nociceptive signals. J. Comp. Neurol. 514:555,566, 2009. © 2009 Wiley-Liss, Inc. [source]


Reductions in N-acetylaspartylglutamate and the 67 kDa form of glutamic acid decarboxylase immunoreactivities in the visual system of albino and pigmented rats after optic nerve transections

THE JOURNAL OF COMPARATIVE NEUROLOGY, Issue 3 2003
John R. Moffett
Abstract This study compares the immunohistochemical distributions of N-acetylaspartylglutamate (NAAG) and the large isoform of the ,-aminobutyric acid (GABA)-synthesizing enzyme glutamic acid decarboxylase (GAD67) in the visual system of albino and pigmented rats. Most retinal ganglion cells and their axons were strongly immunoreactive for NAAG, whereas GAD67 immunoreactivity was very sparse in these cells and projections. In retinorecipient zones, NAAG and GAD67 immunoreactivities occurred in distinct populations of neurons and in dense networks of strongly immunoreactive fibers and synapses. Dual-labeling immunohistochemistry indicated that principal neurons were stained for NAAG, whereas local interneurons were stained for GAD67. In contrast to the distribution observed in retinorecipient zones, most or all neurons were doubly stained for NAAG and GAD67 in the thalamic reticular nucleus. Ten days after unilateral optic nerve transection, NAAG-immunoreactive fibers and synapses were substantially reduced in all contralateral retinal terminal zones. The posttransection pattern of NAAG-immunoreactive synaptic loss demarcated the contralateral and ipsilateral divisions of the retinal projections. In addition, an apparent transynaptic reduction in GAD67 immunoreactivity was observed in some deafferented areas, such as the lateral geniculate. These findings suggest a complicated picture in which NAAG and GABA are segregated in distinct neuronal populations in primary visual targets, yet they are colocalized in neurons of the thalamic reticular nucleus. This is consistent with NAAG acting as a neurotransmitter release modulator that is coreleased with a variety of classical transmitters in specific neural pathways. J. Comp. Neurol. 458:221,239, 2003. © 2003 Wiley-Liss, Inc. [source]


Skin sympathetic adrenergic innervation: An immunofluorescence confocal study

ANNALS OF NEUROLOGY, Issue 2 2006
Vincenzo Donadio MD
Objective The aim of this study was to characterize sympathetic adrenergic innervation of the skin in healthy subjects using dopamine , hydroxylase (D,H) as a specific marker for noradrenergic fibers. Methods Sympathetic adrenergic innervation of human skin was studied in 10 healthy subjects by indirect immunofluorescence and confocal microscopy applied to punch skin biopsies. Noradrenergic fibers were identified both in glabrous and hairy skin using D,H antibody. Results D,H immunoreactive fibers were mainly localized in arteriovenous anastomoses, arrector pilorum muscles, and arterioles, whereas few adrenergic fibers were found around sweat glands. Interpretation Our description of sympathetic adrenergic innervation of human skin aims to improve the diagnostic ability of skin biopsy to detect selective autonomic nervous system disorders. Ann Neurol 2006;59;376,381 [source]