Immunoglobulin-like Receptors (immunoglobulin-like + receptor)

Distribution by Scientific Domains

Kinds of Immunoglobulin-like Receptors

  • cell immunoglobulin-like receptor
  • killer cell immunoglobulin-like receptor
  • killer immunoglobulin-like receptor

  • Terms modified by Immunoglobulin-like Receptors

  • immunoglobulin-like receptor gene

  • Selected Abstracts


    The KIR and CD94/NKG2 families of molecules in the rhesus monkey

    IMMUNOLOGICAL REVIEWS, Issue 1 2001
    Michelle L. LaBonte
    Summary: Natural killer (NK) cells and a subset of T cells express families of receptors that are capable of detecting major histocompatibility complex (MHC) class I expression on the surface of cells. Molecules of the killer cell immunoglobulin-like receptor (KIR) family bind directly to MHC class I, while those of the CD94/NKG2 family recognize MHC class I signal sequences bound to HLA-E. Both the KIR and CD94/NKG2 families are composed of activating and inhibitory molecules that serve to regulate the function of NK cells as a result of their MHC class I recognition. Here we review the recently described KIR and CD94/NKG2 family members in the rhesus monkey. [source]


    The genomic context of natural killer receptor extended gene families

    IMMUNOLOGICAL REVIEWS, Issue 1 2001
    John Trowsdale
    Summary: The two sets of inhibitory and activating natural killer (NK) receptor genes belong either to the Ig or to the C-type lectin superfamilies. Both are extensive and diverse, comprising genes of varying degrees of relatedness, indicative of a process of iterative duplication. We have constructed gene maps to help understand how and when NK receptor genes developed and the nature of their polymorphism. A cluster of over 15 C-type lectin genes, the natural killer complex is located on human chromosome 12p13.1, syntenic with a region in mouse that borders multiple Ly49 loci. The equivalent locus in man is occupied by a single pseudogene, LY49L. The immunoglobulin superfamily of loci, the leukocyte receptor complex (LRC), on chromosome 19q13.4, contains many polymorphic killer cell immunoglobulin-like receptor (KIR) genes as well as multiple related sequences. These include immunoglobulin-like transcript (ILT) (or leukocyte immunoglobulin-like receptor genes), leukocyte-associated inhibitory receptor genes (LAIR), NKp46, Fc,R and the platelet glycoprotein receptor VI locus, which encodes a collagen-binding molecule. KIRs are expressed mostly on NK cells and some T cells. The other LRC loci are more widely expressed. Further centromeric of the LRC are sets of additional loci with weak sequence similarity to the KIRs, including the extensive CD66(CEA) and Siglec families. The LRC-syntenic region in mice contains no orthologues of KIRs. Some of the KIR genes are highly polymorphic in terms of sequence as well as for presence/absence of genes on different haplotypes. Some anchor loci, such as KIR2DL4, are present on most haplotypes. A few ILT loci, such as ILT5 and ILT8, are polymorphic, but only ILT6 exhibits presence/absence variation. This knowledge of the genomic organisation of the extensive NK superfamilies underpins efforts to understand the functions of the encoded NK receptor molecules. It leads to the conclusion that the functional homology of human KIR and mouse Ly49 genes arose by convergent evolution. NK receptor immunogenetics has interesting parallels with the major histocompatibility complex (MHC) in which some of the polymorphic genes are ligands for NK molecules. There are hints of an ancient genetic relationship between NK receptor genes and MHC-paralogous regions on chromosomes 1, 9 and 19. The picture that emerges from both complexes is of eternal evolutionary restlessness, presumably in response to resistance to disease. This work was funded by the Wellcome Trust and the MRC [source]


    Genesis of the ILT/LIR/MIR clusters within the human leukocyte receptor complex

    IMMUNOLOGICAL REVIEWS, Issue 1 2001
    Armin Volz
    Summary: The human leukocyte receptor complex (LRC) contains at least 26 genes which belong to the immunoglobulin superfamily. The genes include two clusters of immunoglobulin-like transcript (ILT)/leukocyte immunoglobulin-like receptor (LIR)/monocyte-macrophage inhibitory receptor (MIR) loci, a cluster of killer cell inhibitory receptor (KIR) genes, two leukocyte-associated immunoglobulin-like receptor genes, as well as the Fc receptor for IgA and the natural cytotoxicity receptor 1 loci. It has already been postulated that these genes have evolved by multiple duplications, while the two ILT clusters are likely to have been generated by the inverse duplication of an ancient ILT cluster. To shed more light on the possible origin of the loci within the LRC, we have now investigated the presence of KIR and ILT loci in a variety of vertebrates by hybridizations and compared the genomic sequences of all ILT genes. Our results lead to the following conclusions: 1) the origin of KIR genes dates back to about 100 million years, but only primate and human KIRs are closely related; 2) in contrast, genes which are detectable with human ILT cDNAs are already found in birds, suggesting their presence already about 300 million years ago. Using the sequence data produced by the human genome project, we have developed a hypothesis that reconstructs the genesis of the two human ILT clusters in detail which will help to understand the function of the LRC. This work was supported by the European Union through grant BMH4-CT96,1105 (to A.Z.). We also thank the Sonnenfeld-Stiftung (Berlin) and the Berliner Krebsgesellschaft for financial support. [source]


    Analysis of candidate genes on chromosome 19 in coeliac disease: an association study of the KIR and LILR gene clusters

    INTERNATIONAL JOURNAL OF IMMUNOGENETICS, Issue 4 2002
    S. J. Moodie
    Summary Coeliac disease is strongly heritable, with more than half of the genetic susceptibility estimated to come from genes outside the HLA region. Several candidate regions have been suggested from genome-wide linkage studies including chromosome 19q13.4 where linkage has been replicated between populations. The natural killer (NK) cell immunoglobulin-like receptors (KIRs) and leukocyte immunoglobulin-like receptor (LILR, also known as ILT and LIR) gene clusters lie within this region in the leukocyte receptor cluster (LRC). KIR molecules are involved in cytotoxic lymphocyte function and expressed by intraepithelial T and NK cells in the duodenum. We studied 132 unrelated UK Caucasian coeliac patients and their parents together with a control group of 171 UK Caucasians. PCR-SSP for KIR2DL1, KIR2DL2, KIR2DL3, KIR2DL5, LILRA3 (ILT6), LILRA3 deletion and an LILRA3 exon 3 single nucleotide polymorphism (SNP) allowed classification of KIR genotypes into five categories and determination of homozygosity or heterozygosity for the common A and B type KIR haplotypes (as defined in the text) and for the LILRA3 deletion. Case,control analysis found no association of the five KIR genotype categories, the A or B KIR haplotypes, the LILRA3 gene deletion or the LILRA3 exon 3 SNP with coeliac disease. A transmission disequilibrium test also found no association of the A and B KIR haplotypes or the LILRA3 gene deletion with coeliac disease. [source]


    Structural basis of MHC class I recognition by natural killer cell receptors

    IMMUNOLOGICAL REVIEWS, Issue 1 2001
    Mark W. Sawicki
    Summary: Natural killer (NK)-cell function is regulated by NK receptors that recognize MHC class I (MHC-I) molecules on target cells. Two structurally distinct families of NK receptors have been identified, the immunoglobulin-like family (killer cell immunoglobulin-like receptors (KIRs), leukocyte immunoglobulin-like receptors (LIRs)) and the C-type lectin-like family (Ly49, CD94/NKG2A, NKG2D, CD69). Recently, the three-dimensional structures of several NK receptors were determined, in free form or bound to MHC-I. These include those of unbound KIRs, NKG2D, CD69, LIR-1 and the CD94 subunit of the CD94/NKG2A heterodimer. Together, these structures define the basic molecular architecture of both the immunoglobulin-like and C-type lectin-like families of NK receptors. In addition, crystal structures have been reported for the complex between Ly49A and H-2Dd, and for KIR2DL2 bound to HLA-Cw3. The complex structures provide a framework for understanding MHC-I recognition by NK receptors from both families and reveal striking differences in the nature of this recognition, despite the receptors' functional similarity. This research was supported, in part, by National Institutes of Health grants R01 AI47900 and R37 36900 (RAM) and a fellowship from the Cancer Research Institute (MWS). We are grateful to DW Wolan and IA Wilson for providing coordinates of NKG2D prior to publication, and to members of our laboratories for encouragement. [source]


    Human cytomegalovirus and natural killer-mediated surveillance of HLA class I expression: a paradigm of host,pathogen adaptation

    IMMUNOLOGICAL REVIEWS, Issue 1 2001
    Miguel López-Botet
    Summary: Among various strategies to evade the host immune response, some viruses like human cytomegalovirus (HCMV) interfere with surface MHC class I expression and antigen presentation to T lymphocytes. The ability of natural killer (NK) cells to detect MHC class I molecules through inhibitory receptors can be envisaged as an adaptation of the immune system for responding to such pathological alterations. To fulfil that role, rodents use members of the Ly49 C-type lectin superfamily, whereas primates employ killer immunoglobulin-like receptors and the immunoglobulin-like transcript 2/leucocyte immunoglobulin-like receptor-1 receptor. CD94/NKG2 lectin-like heterodimers represent the most conserved receptor system for MHC class I molecules; by interacting with human HLA-E or murine Qa-1b, CD94/NKG2A inhibitory receptors broadly probe the biosynthesis pathway of other class I molecules. Reciprocally, HCMV has developed mechanisms to evade the NK response while modulating HLA class Ia expression. The ability of HCMV to maintain surface levels of HLA-E and to express an HLA class I surrogate (UL18) are herein discussed in the context of the interplay with human NKR systems. This work was supported by grants FIS 00/0181 and SAF98-0006. We thank Dr A. Angulo for helpful discussion. [source]


    Activating and inhibitory nature of the murine paired immunoglobulin-like receptor family

    IMMUNOLOGICAL REVIEWS, Issue 1 2001
    Toshiyuki Takai
    Summary: Clones for murine paired immunoglobulin-like receptors (PIR) were first isolated as those coding for type I transmembrane glycoproteins with six immunoglobulin-like domains homologous to human Fc,R, bovine Fc,2R, and other related receptors. However, they turned out to bind neither IgA nor other immunoglobulins in the case of the ectopic expression on COS-1 fibroblastic cells. PIR-A and B are expressed on a wide variety of cells in the murine immune system, such as in B cells, mast cells, macrophages, and dendritic cells, mostly in a pairwise fashion. PIR-A requires homodimeric Fc receptor common , chain, which harbors an immunoreceptor tyrosine-based activation motif, for its efficient cell surface expression and for the delivery of activation signaling. In contrast, PIR-B contains immunoreceptor tyrosine-based inhibitory motifs (ITIMs) in its cytoplasmic portion and inhibits receptor-mediated activation signaling in vitro upon engagement with other activating-type receptors such as the antigen receptor on B cells and the high affinity Fc receptor for IgE on mast cells. ITIMs of PIR-B on macrophages and B cells have been shown to be constitutively phosphorylated in their tyrosine residues. Although the ligand for PIR still remains unknown, the transgenics and the gene-targeted mice will provide us with valuable information on their physiological roles in the immune regulation. We thank Hiromi Kubagawa for discussion. This work is supported by CREST Program of JST, Virtual Research Institute of Aging funded by Boehringer Ingelheim, and by research grants from the Ministry of Education, Science, Sports and Culture of Japan to T. Takai. [source]


    The extensive polymorphism of KIR genes

    IMMUNOLOGY, Issue 1 2010
    Derek Middleton
    Summary The functions of human natural killer (NK) cells are controlled by diverse families of antigen receptors. Prominent among these are the killer cell immunoglobulin-like receptors (KIR), a family of genes clustered in one of the most variable regions of the human genome. Within this review we discuss the vast polymorphism of the KIR gene complex which rivals that of the human leucocyte antigen (HLA) complex. There are several aspects to this polymorphism. Initially there is presence/absence of individual KIR genes, with four of these genes, termed framework genes, being present in all individuals tested to date, except on those very occasional instances when the gene has been deleted. Within each gene, alleles are present at different frequencies. We provide details of a new website that enables convenient searching for data on KIR gene, allele and genotype frequencies in different populations and show how these frequencies vary in different worldwide populations and the high probability of individuals differing in their KIR repertoire when both gene and allele polymorphism is considered. The KIR genes present in an individual may be classified into A and/or B haplotypes, which respectively have a more inhibitory role or a more activating role on the function of the NK cell. Family studies have been used to ascertain the make-up of these haplotypes, inclusion of allele typing enabling determination of whether one or two copies of a particular gene is present. In addition to genetic diversification the KIR gene complex shows differences at the functional level with different alleles having different protein expression levels and different avidity with their HLA ligand. [source]


    Putting the natural killer cell in its place

    IMMUNOLOGY, Issue 1 2006
    Geraldine M. O'Connor
    Summary Natural killer (NK) cells were originally described as ,null' lymphocytes, but we have increasing evidence of their role in recognizing pathogen, and our knowledge of NK cell receptors continues to expand exponentially. Human NK cells have many receptors for human leucoctye antigen (HLA) class I. These killer immunoglobulin-like receptors (KIRs) and CD94/NKG2 receptors can signal in both positive and negative ways to regulate NK cell functions. The inhibitory receptors are the best characterized, but even in these cases much of their functional biology remains elusive. In this review, some recent advances in terms of the three-immunoglobulin (3Ig)-domain KIRs are discussed. Natural cytotoxicity receptors (NCRs) are among the activatory receptors found on NK cells. While pathogen ligands for these receptors have been described, endogenous ligands remain elusive. NCRs and NKG2D, a receptor for stress-induced antigens, appear to play complementary functional roles in terms of NK cell activation. More recently described on NK cells are the Toll-like receptors. In particular, these receptors of the innate immune system allow NK cells to directly sense pathogen, and their ligation on accessory cells indirectly activates NK cells through cytokine production. It is becoming clear that none of these receptor systems functions in isolation and that it is the sum of the signals (which will reflect the pathogenic situation), in addition to the cytokine milieu, that will direct NK cell activation. The resulting cytotoxicity, cytokine production and direct cell,cell regulatory interactions with other cells of the immune system, for example dendritic cells, ultimately determine the role of the NK cell in the context of an overall immune response. [source]


    Compound KIR - HLA genotype analyses in the Iranian population by a novel PCR,SSP assay

    INTERNATIONAL JOURNAL OF IMMUNOGENETICS, Issue 3 2010
    N. Tajik
    Summary Natural killer (NK) cells eliminate infected and transformed cells while still are self-tolerant. Interactions of the independently segregating Killer cell immunoglobulin-like receptors (KIR) and human leucocyte antigens (HLA) loci play a critical role in NK cell regulation. Different compound KIR-HLA genotypes can impart different thresholds of activation to the NK-cell repertoire and such genotypic variation has been found to confer altered risk in a number of human diseases including viral infections, autoimmune disorders, reproduction abnormalities and cancers. In this study, we presented a novel combined KIR-HLA polymerase chain reaction,sequence-specific primers genotyping assay for simultaneous determination of KIR genes and their three major HLA class I ligand groups (C1, C2, and Bw4). Moreover, known inhibitory and activating KIR + HLA (iKIR + HLA: 2DL2/3 + C1, 2DL1 + C2, 3DL1 + Bw4; and aKIR + HLA: 2DS2 + C1, 2DS1 + C2, 3DS1 + Bw4) combinations as well as co-inheritance of aKIR genes and iKIR + HLA pairs were analysed in a total of 200 unrelated healthy Iranian individuals. All tested subjects had at least one of the three iKIR + HLA pairs and the frequencies of various inhibitory combinations in the study group were: 31.5%, three iKIR + HLA pairs, 53.5%, two iKIR + HLA pairs, and 15%, 0ne iKIR + HLA pair. Furthermore, we revealed that majority of Iranians (69%) carry compound genotypes with greater number of inhibitory pairings than activating combinations (iKIR + HLA > aKIR + HLA). Conversely, iKIR + HLA < aKIR (45%) was dominant genotype in the study group. We conclude that selective evolutionary pressure has propensity to maintain KIR-HLA genotypes with more inhibitory combinations to guarantee self-tolerance. In contrast, existence of activating KIR genes without normal endogenous ligands, potentially arms the NK population for competent immunosurveillance and stronger defense against infections. [source]


    Distribution of killer cell immunoglobulin-like receptor genes in Poles

    INTERNATIONAL JOURNAL OF IMMUNOGENETICS, Issue 4-5 2008
    E. Majorczyk
    Summary Killer cell immunoglobulin-like receptors (KIRs) present on natural killer cells and minor subpopulations of T cells recognize class I human leucocyte antigen (HLA) molecules on the surface of target cells. Humans differ by the presence or absence of some KIR genes on their chromosomes. As KIRs are important for the outcome of tissue transplantation (particularly for haematopoietic stem cell transplantation) and possibly for pregnancy and autoimmune diseases, knowledge of the KIR gene distribution in a given human population is of practical value. Therefore, we tested 363 healthy individuals from Western Poland for the presence or absence of KIR genes. Results are compared with those published for other human populations. KIR gene frequencies in Poles are close to these in other Caucasoids but different from those in Asian and African populations, and particularly distant from those in Australian Aborigines. [source]


    Analysis of candidate genes on chromosome 19 in coeliac disease: an association study of the KIR and LILR gene clusters

    INTERNATIONAL JOURNAL OF IMMUNOGENETICS, Issue 4 2002
    S. J. Moodie
    Summary Coeliac disease is strongly heritable, with more than half of the genetic susceptibility estimated to come from genes outside the HLA region. Several candidate regions have been suggested from genome-wide linkage studies including chromosome 19q13.4 where linkage has been replicated between populations. The natural killer (NK) cell immunoglobulin-like receptors (KIRs) and leukocyte immunoglobulin-like receptor (LILR, also known as ILT and LIR) gene clusters lie within this region in the leukocyte receptor cluster (LRC). KIR molecules are involved in cytotoxic lymphocyte function and expressed by intraepithelial T and NK cells in the duodenum. We studied 132 unrelated UK Caucasian coeliac patients and their parents together with a control group of 171 UK Caucasians. PCR-SSP for KIR2DL1, KIR2DL2, KIR2DL3, KIR2DL5, LILRA3 (ILT6), LILRA3 deletion and an LILRA3 exon 3 single nucleotide polymorphism (SNP) allowed classification of KIR genotypes into five categories and determination of homozygosity or heterozygosity for the common A and B type KIR haplotypes (as defined in the text) and for the LILRA3 deletion. Case,control analysis found no association of the five KIR genotype categories, the A or B KIR haplotypes, the LILRA3 gene deletion or the LILRA3 exon 3 SNP with coeliac disease. A transmission disequilibrium test also found no association of the A and B KIR haplotypes or the LILRA3 gene deletion with coeliac disease. [source]


    ORIGINAL ARTICLE: Activating Killer Cell Immunoglobulin-Like Receptor Genes' Association with Recurrent Miscarriage

    AMERICAN JOURNAL OF REPRODUCTIVE IMMUNOLOGY, Issue 1 2009
    Rafael Gustavo Vargas
    Problem, Natural killer (NK) cells are regulated through NK cell receptors such as killer cell immunoglobulin-like receptors (KIRs). KIRs are suspected of being involved in the causes of recurrent miscarriage (RM) as a higher proportion of activated NK cells were observed in women with RM when compared with that in controls. The aim of this study was to investigate if KIR genes coding for receptors known to have as ligands HLA class I molecules are correlated with RM. Method of study A matched case,control study was carried out in 68 south Brazilian Caucasian patient couples with RM and 68 control fertile couples. KIR genes were typed by PCR-Reverse SSO method. Results The rate of possession of an elevated number of activating KIR genes (positive for five or six activating KIR genes out of six different activating KIR genes analyzed) in RM patient women was significantly higher (P = 0.0201) when compared with that in control fertile women. These data suggest that women carrying a high content of activating KIR genes have about threefold increased probability to develop RM [OR = 2.71; 95% CI (1.23,6.01)]. Conclusion Our results indicate that RM could be associated with NK cell activation mediated by a profile rich in activating KIR genes. [source]


    Reassessing the Impact of Donor HLA-C Genotype on Long-Term Liver Transplant Survival

    AMERICAN JOURNAL OF TRANSPLANTATION, Issue 7 2009
    T. H. Tran
    HLA-C is the major inhibitory ligand for killer immunoglobulin-like receptors (KIRs) that are expressed on natural killer (NK) cells. Based on their KIR specificity, HLA-C alleles can be divided into two groups, termed HLA-C1 and HLA-C2. Donor HLA-C group has recently been identified by Hanvesakul et al. (Am J Transplant 2008) as a critical determinant of clinical outcome following liver transplantation: Possession of at least one HLA-C group 2 allele by the donor was associated with significantly improved long-term graft and patient survival, presumably due to an inhibition of host NK cell function. To verify this study, we performed genotyping of 913 deceased liver donors for the relevant KIR epitopes of HLA-C and correlated the presence or absence of donor HLA-C2 genotype with graft and patient survival. In our study, donor HLA-C2 genotype had no impact on 10-year graft or patient survival. We cannot confirm a major role of donor HLA-C2 genotype on long-term allograft survival after liver transplantation. [source]


    Killer immunoglobulin-like receptor ligand HLA-Bw4 protects against multiple sclerosis,

    ANNALS OF NEUROLOGY, Issue 6 2009
    Ĺslaug R. Lorentzen MD
    Objective Multiple sclerosis (MS) is a chronic inflammatory disease affecting the central nervous system. A human leukocyte antigen (HLA) class II association is well established (DRB1*1501-DQB1*0602), but more recently HLA class II,independent associations with HLA class I variants have also been reported. The HLA class I (HLA-A, -B, -C) molecules serve as ligands for both T-cell receptors and killer immunoglobulin-like receptors (KIRs). We investigated the HLA class I alleles defined by their KIR binding motifs and the KIR genes to evaluate whether these genes could influence MS susceptibility or severity, alone or in combination. Methods We typed Norwegian MS patients (n = 631) and controls (n = 555) for HLA-A, -B, -C and -DRB1 alleles as well as the presence or absence of genes encoding inhibitory (KIR2DL1, KIR2DL2, KIR2DL3, KIR2DL5, KIR3DL1, KIR3DL2, KIR3DL3) and activating (KIR2DS1, KIR2DS2, KIR2DS3, KIR2DL4, KIR2DS4, KIR2DS5, KIR3DS1) KIRs. Results The frequency of the HLA-Bw4 specificity, which is the ligand for the inhibitory KIR3DL1, was significantly reduced in MS patients as compared with controls (41.4% vs 55.1%, puncorrected (uc) = 4.6 × 10,6). Also after stratifying for known HLA class II associations, the HLA-Bw4 association was seen (puc = 0.002). No significant differences in gene carrier frequencies of inhibitory and activating KIRs were observed. However, our data indicate that MS patients who carry the activating KIR2DS2 and the inhibitory KIR2DL2 genes have more severe disease than patients not carrying these genes. Interpretation Carriage of the ligand of the inhibitory KIR3DL1 receptor, HLA-Bw4, was found to protect against MS in an HLA-DRB1 independent manner. Ann Neurol 2009;65:658,666 [source]


    Activating and inhibitory killer immunoglobulin-like receptors (KIR) in haploidentical haemopoietic stem cell transplantation to cure high-risk leukaemias

    CLINICAL & EXPERIMENTAL IMMUNOLOGY, Issue 3 2009
    A. Moretta
    Summary A number of experimental studies have shown that natural killer (NK) cells can eliminate cancer cells and the mechanisms involved in this effect have been uncovered during the last two decades. Clinical data from haploidentical haematopoietic stem cell transplantation (haplo-HSCT) revealed that NK cells were responsible for remarkably favourable effects in both adult and paediatric high-risk leukaemias. NK receptors specific for major histocompatibility complex (MHC) class I molecules, including killer immunoglobulin (Ig)-like receptors (KIR) and CD94/NKG2A, play a major role in the anti-leukaemia effect (mediating either inhibitory or activating signals). Haplo- HSCT requires a heavy conditioning regimen for the patient and the use of large numbers of T cell-depleted HSC to be grafted. After transplantation, natural killer cells develop from HSC shortly after engraftment and may include ,alloreactive' NK cells that kill leukaemic cells and prevent graft- versus -host disease (GvHD). Alloreactive NK cells are characterized by the expression of KIR that are not engaged by any of the human leucocyte antigen (HLA) class I alleles expressed by the patient. Their generation is dependent upon the existence of a KIR/HLA class I mismatch between donor and recipient. Novel important information on the function and specificity of different KIR has been obtained recently by the analysis of donor-derived alloreactive NK cells in a cohort of paediatric patients given haplo-HSCT to cure acute, high-risk leukaemias. [source]