Immune Synapses (immune + synapsis)

Distribution by Scientific Domains


Selected Abstracts


Immune synapses formed with measles virus-infected dendritic cells are unstable and fail to sustain T cell activation

CELLULAR MICROBIOLOGY, Issue 8 2007
Yoanna Shishkova
Summary Interaction with dendritic cells (DCs) is considered as central to immunosuppression induced by viruses, including measles virus (MV). Commonly, viral infection of DCs abrogates their ability to promote T cell expansion, yet underlying mechanisms at a cellular level are undefined. We found that MV-infected DCs only subtly differed from LPS-matured with regard to integrin activation, acquisition of a migratory phenotype and motility. Similarly, the organization of MV-DC/T cell interfaces was consistent with that of functional immune synapses with regard to CD3 clustering and MHC class II surface recruitment. The majority of MV-DC/T cell conjugates was, however, unstable and only promoted abortive T cell activation. Thus, MV-infected DCs retain activities required for initiating, but not sustaining T cell conjugation and activation. This is partially rescued if surface expression of the MV glycoproteins on DCs is abolished by infection with a recombinant MV encoding VSV G protein instead, indicating that these contribute directly to synapse destabilization and thereby act as effectors of T cell inhibition. [source]


Sustained LFA-1 cluster formation in the immune synapse requires the combined activities of L -plastin and calmodulin

EUROPEAN JOURNAL OF IMMUNOLOGY, Issue 9 2010
Guido H. Wabnitz
Abstract Formation of immune synapses (IS) between T cells and APC requires multiple rearrangements in the actin cytoskeleton and selective receptor accumulation in supramolecular activation clusters (SMAC). The inner cluster (central SMAC) contains the TCR/CD3 complex. The outer cluster (peripheral SMAC) contains the integrin LFA-1 and Talin. Molecular mechanisms selectively stabilizing receptors in the IS remained largely unknown. Here, we demonstrate that sustained LFA-1 clustering in the IS is a consequence of the combined activities of the actin-bundling protein L -plastin (LPL) and calmodulin. Thus, upon antigen-recognition of T cells, LPL accumulated predominantly in the peripheral SMAC. siRNA-mediated knock-down of LPL led to a failure of LFA-1 and Talin redistribution , however, not TCR/CD3 relocalization , into the IS. As a result of this LPL knock-down, the T-cell/APC interface became smaller over time and T-cell proliferation was inhibited. Importantly, binding of calmodulin to LPL was required for the maintenance of LPL in the IS and consequently inhibition of calmodulin also prevented stable accumulation of LFA-1 and Talin, but not CD3, in the IS. [source]


Blood group antigens and immune responses,detailed knowledge is necessary to prevent immunization and to follow up immunized individuals

ISBT SCIENCE SERIES: THE INTERNATIONAL JOURNAL OF INTRACELLULAR TRANSPORT, Issue n1 2010
A. Husebekk
Background The immune system is educated to detect and react with foreign antigens and to tolerate self-antigen. Transfusion of blood cells and plasma and pregnancies challenge the immune system by the introduction of foreign antigens. The antigens may cause an immune response, but in many instances this is not the case and the individual is not immunised after exposure of blood group antigens. Aims The aim of the presentation is to dissect some immune responses to blood group antigens in order to understand the mechanism of immunisation. Methods The results of immune responses to blood group antigens can be detected by the presence of antibodies to the antigens. If the antibodies are of IgG class, the activated B cells have received help from antigen specific T cells. Both antibodies, B cells and T cells can be isolated from immunised individuals and studied in the laboratory. Also B-cell receptors and T-cell receptors as well as MHC molecules on antigen presenting cells can be studied and models of the immune synapses can be created in vitro. Results The most classic immune responses in transfusion medicine and in incompatible pregnancies are immune responses to the RhD antigen on red cells, HLA class I molecules on white cells and platelets and human platelet antigens. The nature of these antigens are different; RhD antigens are part of a large complex, present on red cells from RhD positive individuals and completely lacking on red cells from RhD negative individuals. It is likely that many peptides derived from this antigen complex may stimulate T cells and B cells. HLA antigens are highly polymorphic and the antigens are known to induce strong alloimmune responses. The HPA antigens are created by one amino acid difference in allotypes based on a single nucleotide polymorphism at the genetic level. HPA 1a induce immune responses in 10% of HPA 1b homozygote pregnant women. The result of these immune responses is destruction of blood cells with clinical consequences connected to the effect of transfusions or the outcome of pregnancies. Summary/Conclusions Even though there is emerging knowledge about the immune responses to some of the blood group antigens, more information must be gained in order to understand the complete picture. The action of the innate immune response initiating the adaptive immune response to blood group antigens is not well understood. A detailed understanding of both the innate ad the adaptive part of the immune response is necessary to identify individuals at risk for immunisation and to prevent immunisation to blood group antigens. [source]


Immune synapses formed with measles virus-infected dendritic cells are unstable and fail to sustain T cell activation

CELLULAR MICROBIOLOGY, Issue 8 2007
Yoanna Shishkova
Summary Interaction with dendritic cells (DCs) is considered as central to immunosuppression induced by viruses, including measles virus (MV). Commonly, viral infection of DCs abrogates their ability to promote T cell expansion, yet underlying mechanisms at a cellular level are undefined. We found that MV-infected DCs only subtly differed from LPS-matured with regard to integrin activation, acquisition of a migratory phenotype and motility. Similarly, the organization of MV-DC/T cell interfaces was consistent with that of functional immune synapses with regard to CD3 clustering and MHC class II surface recruitment. The majority of MV-DC/T cell conjugates was, however, unstable and only promoted abortive T cell activation. Thus, MV-infected DCs retain activities required for initiating, but not sustaining T cell conjugation and activation. This is partially rescued if surface expression of the MV glycoproteins on DCs is abolished by infection with a recombinant MV encoding VSV G protein instead, indicating that these contribute directly to synapse destabilization and thereby act as effectors of T cell inhibition. [source]