Home About us Contact | |||
Immune Pathways (immune + pathway)
Selected AbstractsNutriose, a prebiotic low-digestible carbohydrate, stimulates gut mucosal immunity and prevents TNBS-induced colitis in piglets,INFLAMMATORY BOWEL DISEASES, Issue 5 2010Philippe R. Pouillart PhD Abstract Background: We investigated a prebiotic low-digestible carbohydrate (LDC) as a possible food ingredient to stimulate bowel functions in the treatment of inflammatory bowel disease. The study aimed to assess a fermentable dextrin fiber (Nutriose) and its relationship to the immune management of the disease and the microbiota profile in colitis-bearing piglets. Methods: In a randomized placebo-controlled parallel blind preclinical study, 32 male piglets were fed LDC (4% Nutriose) or dextrose placebo for 44 days before being challenged with trinitrobenzene sulfonic acid (TNBS) to induce colitis. We followed the microbiota profile using real-time polymerase chain reaction (PCR) targeted to 9 bacterial genera. Secretory IgA was evaluated by enzyme-linked immunosorbent assay (ELISA). Inflammatory protein profiles were monitored in blood and colonic tissues. Both histological scoring of biopsy samples and live endoscopic scoring were used to measure colitis development. Results: Prior and continuing LDC supplementation alleviated the symptoms of colitis (body weight loss, bloody stools) induced by a TNBS challenge. This effect was associated with an improvement in endoscopic and histological scores. LDC was shown to selectively downregulate some of the proinflammatory factors and their concomitant pyretic events and to stimulate the Th2-related immune pathway (IL-10 and s-IgA). Conclusions: At the dose tested, LDC is a well-tolerated prebiotic agent able to not only stimulate butyrogenic bacteria strains and reduce intestinal transit disorders and energy intake, but also to prevent chronic inflammatory intestinal injuries. Inflamm Bowel Dis 2010 [source] Analysing the effect of novel therapies on cytokine expression in experimental arthritisINTERNATIONAL JOURNAL OF EXPERIMENTAL PATHOLOGY, Issue 5 2005Richard O. Williams Summary Type II collagen-induced arthritis (CIA) is an animal model of rheumatoid arthritis that has been used extensively to address questions of disease pathogenesis and to validate novel therapeutic targets. Susceptibility to CIA is strongly associated with major histocompatibility complex class II genes, and the development of arthritis is accompanied by a robust T- and B-cell response to type II collagen. The main pathological features of CIA include proliferative synovitis with infiltration of inflammatory cells, pannus formation, cartilage degradation, erosion of bone and fibrosis. Pro-inflammatory cytokines, such as tumour necrosis factor , and interleukin-1,, are expressed in the arthritic joints in both murine CIA and human rheumatoid arthritis, and blockade of these molecules results in amelioration of disease. Hence, there is a great deal of interest in the development of small-molecular-weight inhibitors of pro-inflammatory cytokines. There is also interest in the development and testing of drugs with the capacity to modulate the immune pathways involved in driving the inflammatory response in arthritis. For these reasons, there is a need to monitor the effect of novel treatments on cytokine expression in vivo. In this review, we outline the various techniques used to detect cytokines in experimental arthritis and describe how these techniques have been used to quantify changes in cytokine expression following therapeutic intervention. [source] Evolving Paradigms That Determine the Fate of an AllograftAMERICAN JOURNAL OF TRANSPLANTATION, Issue 5 2010J. S. Bromberg Despite the many advances in both immunological knowledge and the practical application of clinical immunosuppression, the holy grail of indefinite graft survival with immune tolerance in clinical solid organ transplantation remains a distant dream. The tremendous progress made in understanding the molecular and cellular basis of allograft rejection has not been translated into durable modalities that have advanced clinical care and outcomes. Indeed, currently used drugs and treatment protocols, largely directed at inhibiting alloreactive T cells, have not optimally improved allograft survival or function. A shift in emphasis, focusing on under appreciated immune pathways must now be considered to make further improvement. We highlight three areas of recent interest, complement, NK cells and lymphatics, which reinforce the concept that the transplant community must direct attention on how the immune system as a whole responds to a transplant. The current challenge is to integrate molecular, cellular and anatomic concepts to achieve the equivalent of a unified field theory of the immune response to organ transplants. [source] Subtype-specific peripheral blood gene expression profiles in recent-onset juvenile idiopathic arthritisARTHRITIS & RHEUMATISM, Issue 7 2009Michael G. Barnes Objective To identify differences in peripheral blood gene expression between patients with different subclasses of juvenile idiopathic arthritis (JIA) and healthy controls in a multicenter study of patients with recent-onset JIA prior to treatment with disease-modifying antirheumatic drugs (DMARDs) or biologic agents. Methods Peripheral blood mononuclear cells (PBMCs) from 59 healthy children and 136 patients with JIA (28 with enthesitis-related arthritis [ERA], 42 with persistent oligoarthritis, 45 with rheumatoid factor [RF],negative polyarthritis, and 21 with systemic disease) were isolated from whole blood. Poly(A) RNA was labeled using a commercial RNA amplification and labeling system (NuGEN Ovation), and gene expression profiles were obtained using commercial expression microarrays (Affymetrix HG-U133 Plus 2.0). Results A total of 9,501 differentially expressed probe sets were identified among the JIA subtypes and controls (by analysis of variance; false discovery rate 5%). Specifically, 193, 1,036, 873, and 7,595 probe sets were different in PBMCs from the controls compared with those from the ERA, persistent oligoarthritis, RF-negative polyarthritis, and systemic JIA patients, respectively. In patients with persistent oligoarthritis, RF-negative polyarthritis, and systemic JIA subtypes, up-regulation of genes associated with interleukin-10 (IL-10) signaling was prominent. A hemoglobin cluster was identified that was underexpressed in ERA patients but overexpressed in systemic JIA patients. The influence of JAK/STAT, ERK/MAPK, IL-2, and B cell receptor signaling pathways was evident in patients with persistent oligoarthritis. In systemic JIA, up-regulation of innate immune pathways, including IL-6, Toll-like receptor/IL-1 receptor, and peroxisome proliferator,activated receptor signaling, were noted, along with down-regulation of gene networks related to natural killer cells and T cells. Complement and coagulation pathways were up-regulated in systemic JIA, with a subset of these genes being differentially expressed in other subtypes as well. Conclusion Expression analysis identified differentially expressed genes in PBMCs obtained early in the disease from patients with different subtypes of JIA and in healthy controls, providing evidence of immunobiologic differences between these forms of childhood arthritis. [source] Immune response profiles in human skinBRITISH JOURNAL OF DERMATOLOGY, Issue 2007T. Meyer Summary In addition to the function as a physical barrier human skin has been shown to be an important immune organ displaying various defense mechanisms, which can be divided into three major functional compartiments: (i) Epithelial defense, which is characterized by antimicrobial peptides and proteins (AP) and which can be induced in inflammatory lesions but also in the absence of inflammation. (ii) Innate-inflammatory immunity, which involves recognition of microbial compounds by particular receptors like Toll-like receptors (TLR) and subsequent activation of signalling pathways resulting in expression of pro-inflammatory cytokines and interferons, as well as genes of adaptive immunity. Interferon , (IFN,) produced by plasmacytoid dendritic cells (DC) may stimulate myeloid DC to produce IL-12 resulting in classical T-cell activation or to produce IL-23 activating IL-17 producing T-cells (IL-23/IL-17 pathway). (iii) Adaptive immunity, which is based on antigen presenting cells, T-cells and B-cells and which is characterized by specificity and memory. In contrast to epithelial defense and innate-inflammatory immunity, adaptive immune functions provide slowly reacting protection. Recent improvements of our knowledge of dysregulated immune pathways associated with inflammatory skin diseases represent an important basis of novel immunomodulatory treatment modalities. [source] New insights into Chlamydia intracellular survival mechanismsCELLULAR MICROBIOLOGY, Issue 11 2009Jordan L. Cocchiaro Summary Chlamydia sp. are responsible for a wide range of diseases of significant clinical and public health importance. In this review, we highlight how recent cellular and functional genomic approaches have significantly increased our knowledge of the pathogenic mechanisms used by these genetically intractable bacteria. As the extensive repertoire of chlamydial proteins that are translocated into the mammalian host is identified and characterized, a molecular understanding of how Chlamydiae co-opt host cellular functions and block innate immune pathways is beginning to emerge. [source] |