Immediate Early Genes (immediate + early_gene)

Distribution by Scientific Domains

Terms modified by Immediate Early Genes

  • immediate early gene expression

  • Selected Abstracts


    Homer proteins shape Xenopus optic tectal cell dendritic arbor development in vivo

    DEVELOPMENTAL NEUROBIOLOGY, Issue 11 2008
    Kendall R. Van Keuren-Jensen
    Abstract Considerable evidence suggests that the Homer family of scaffolding proteins contributes to synaptic organization and function. We investigated the role of both Homer 1b, the constitutively expressed, and developmentally regulated form of Homer, and Homer 1a, the activity-induced immediate early gene, in dendritic arbor elaboration and synaptic function of developing Xenopus optic tectal neurons. We expressed exogenous Homer 1a or Homer 1b in developing Xenopus tectal neurons. By collecting in vivo time lapse images of individual, EGFP-labeled and Homer-expressing neurons over 3 days, we found that Homer 1b leads to a significant decrease in dendritic arbor growth rate and arbor size. Synaptic transmission was also altered in developing neurons transfected with Homer 1b. Cells expressing exogenous Homer 1b over 3 days had a significantly greater AMPA to NMDA ratios, and increased AMPA mEPSC frequency. These data suggest that increasing Homer 1b expression increases excitatory synaptic inputs, increases synaptic maturation, and slows dendritic arbor growth rate. Exogenous Homer 1a expression increases AMPA mEPSC frequency, but did not significantly affect tectal cell dendritic arbor development. Changes in the ratio of Homer 1a to Homer 1b may signal the neuron that overall activity levels in the cell have changed, and this in turn could affect protein interactions at the synapse, synaptic transmission, and structural development of the dendritic arbor. © 2008 Wiley Periodicals, Inc. Develop Neurobiol, 2008. [source]


    Gene expression analysis in absence epilepsy using a monozygotic twin design

    EPILEPSIA, Issue 9 2008
    Ingo Helbig
    Summary Purpose: To identify genes involved in idiopathic absence epilepsies by analyzing gene expression using a monozygotic (MZ) twin design. Methods: Genome-wide gene expression in lymphoblastoid cell lines (LCLs) was determined using microarrays derived from five discordant and four concordant MZ twin pairs with idiopathic absence epilepsies and five unaffected MZ twin pairs. Gene expression was analyzed using three strategies: discordant MZ twins were compared as matched pairs, MZ twins concordant for epilepsy were compared to control MZ twins, and a singleton design of affected versus unaffected MZ twin individuals was used irrespective of twin pairing. An overlapping gene list was generated from these analyses. Dysregulation of genes recognized from the microarray experiment was validated using quantitative real time PCR (qRT-PCR) in the twin sample and in an independent sample of 18 sporadic absence cases and 24 healthy controls. Results: Sixty-five probe sets were identified from the three combined microarray analysis strategies. Sixteen genes were chosen for validation and nine of these genes confirmed by qRT-PCR in the twin sample. Differential expression for EGR1 (an immediate early gene) and RCN2 (coding for the calcium-binding protein Reticulocalbin 2) were reconfirmed by qRT-PCR in the independent sample. Discussion: Using a unique sample of discordant MZ twins, our study identified genes with altered expression, which suggests novel mechanisms in idiopathic absence epilepsy. Dysregulation of EGR1 and RCN2 is implicated in idiopathic absence epilepsy. [source]


    Expression of immediate early gene pip92 during anisomycin-induced cell death is mediated by the JNK- and p38-dependent activation of Elk1

    FEBS JOURNAL, Issue 15 2000
    Kwang C. Chung
    We report here that immediate early gene pip92 is expressed during anisomycin-induced cell death in fibroblast NIH3T3 cells. To determine the mechanism by which this occurs and to identify downstream signaling pathways, we investigated the induction of the pip92 promoter. The activation of pip92 by anisomycin is mediated by the activation of MAP kinases, such as JNK and p38 kinase, but not ERK. Deletion analysis of the pip92 promoter indicated that pip92 activation occurs primarily within the region containing a serum response element (SRE). Further analysis of the SRE using a heterologous thymidine kinase promoter showed that both an Ets and CArG-like site are required for anisomycin-induced pip92 expression. Elk1, which binds to the Ets site, was phosphorylated by the JNK- and p38-dependent pathways and the phosphorylation of Elk1,GAL4 fusion proteins by these pathways was sufficient for the transactivation. Overall, this study suggested that different MAPK pathways are involved in the expression of immediate early gene pip92 by growth factors and environmental stresses. [source]


    Evidence for Antinociceptive Activity of Botulinum Toxin Type A in Pain Management

    HEADACHE, Issue 2003
    K. Roger Aoki PhD
    The neurotoxin, botulinum toxin type A, has been used successfully, in some patients, as an analgesic for myofascial pain syndromes, migraine, and other headache types. The toxin inhibits the release of the neurotransmitter, acetylcholine, at the neuromuscular junction thereby inhibiting striated muscle contractions. In the majority of pain syndromes where botulinum toxin type A is effective, inhibiting muscle spasms is an important component of its activity. Even so, the reduction of pain often occurs before the decrease in muscle contractions suggesting that botulinum toxin type A has a more complex mechanism of action than initially hypothesized. Current data points to an antinociceptive effect of botulinum toxin type A that is separate from its neuromuscular activity. The common biochemical mechanism, however, remains the same between botulinum toxin type A's effect on the motor nerve or the sensory nerve: enzymatic blockade of neurotransmitter release. The antinociceptive effect of the toxin was reported to block substance P release using in vitro culture systems.1 The current investigation evaluated the in vivo mechanism of action for the antinociceptive action of botulinum toxin type A. In these studies, botulinum toxin type A was found to block the release of glutamate. Furthermore, Fos, a product of the immediate early gene, c- fos, expressed with neuronal stimuli was prevented upon peripheral exposure to the toxin. These findings suggest that botulinum toxin type A blocks peripheral sensitization and, indirectly, reduces central sensitization. The recent hypothesis that migraine involves both peripheral and central sensitization may help explain how botulinum toxin type A inhibits migraine pain by acting on these two pathways. Further research is needed to determine whether the antinociceptive mechanism mediated by botulinum toxin type A affects the neuronal signaling pathways that are activated during migraine. [source]


    Anatomical Markers of Activity in Neuroendocrine Systems: Are we all ,Fos-ed out'?

    JOURNAL OF NEUROENDOCRINOLOGY, Issue 4 2002
    G. E. Hoffman
    Abstract It has now been nearly 15 years since the immediate early gene, c -fos, and its protein product, Fos, were introduced as tools for determining activity changes within neurones of the nervous system. In the ensuing years, this approach was applied to neuroendocrine study with success. With it have come advances in our understanding of which neuroendocrine neurones respond to various stimuli and how other central nervous system components interact with neuroendocrine neurones. Use of combined tract-tracing approaches, as well as double-labelling for Fos and transmitter markers, have added to characterization of neuroendocrine circuits. The delineation of the signal transduction cascades that induce Fos expression has led to establishment of the relationship between neurone firing and Fos expression. Importantly, we can now appreciate that Fos expression is often, but not always, associated with increased neuronal firing and vice versa. There are remaining gaps in our understanding of Fos in the nervous system. To date, knowledge of what Fos does after it is expressed is still limited. The transience of Fos expression after stimulation (especially if the stimulus is persistent) complicates design of experiments to assess the function of Fos and makes Fos of little value as a marker for long-term changes in neurone activity. In this regard, alternative approaches must be sought. Useful alternative approaches employed to date to monitor neuronal changes in activity include examination of (i) signal transduction intermediates (e.g. phosphorylated CREB); (ii) transcriptional/translational intermediates (e.g. heteronuclear RNA, messenger RNA (mRNA), prohormones); and (iii) receptor translocation. Another capitalizes on the fact that many neuroendocrine systems show striking stimulus-transcription coupling in the regulation of their transmitter or its synthetic enzymes. Together, as we move into the 21st Century, the use of multiple approaches to study activity within neuroendocrine systems will further our understanding of these important systems. [source]


    The dusp1 immediate early gene is regulated by natural stimuli predominantly in sensory input neurons

    THE JOURNAL OF COMPARATIVE NEUROLOGY, Issue 14 2010
    Haruhito Horita
    Abstract Many immediate early genes (IEGs) have activity-dependent induction in a subset of brain subdivisions or neuron types. However, none have been reported yet with regulation specific to thalamic-recipient sensory neurons of the telencephalon or in the thalamic sensory input neurons themselves. Here, we report the first such gene, dual specificity phosphatase 1 (dusp1). Dusp1 is an inactivator of mitogen-activated protein kinase (MAPK), and MAPK activates expression of egr1, one of the most commonly studied IEGs, as determined in cultured cells. We found that in the brain of naturally behaving songbirds and other avian species, hearing song, seeing visual stimuli, or performing motor behavior caused high dusp1 upregulation, respectively, in auditory, visual, and somatosensory input cell populations of the thalamus and thalamic-recipient sensory neurons of the telencephalic pallium, whereas high egr1 upregulation occurred only in subsequently connected secondary and tertiary sensory neuronal populations of these same pathways. Motor behavior did not induce high levels of dusp1 expression in the motor-associated areas adjacent to song nuclei, where egr1 is upregulated in response to movement. Our analysis of dusp1 expression in mouse brain suggests similar regulation in the sensory input neurons of the thalamus and thalamic-recipient layer IV and VI neurons of the cortex. These findings suggest that dusp1 has specialized regulation to sensory input neurons of the thalamus and telencephalon; they further suggest that this regulation may serve to attenuate stimulus-induced expression of egr1 and other IEGs, leading to unique molecular properties of forebrain sensory input neurons. J. Comp. Neurol. 518:2873,2901, 2010. © 2010 Wiley-Liss, Inc. [source]


    A critical role of Cyr61 in interleukin-17,dependent proliferation of fibroblast-like synoviocytes in rheumatoid arthritis

    ARTHRITIS & RHEUMATISM, Issue 12 2009
    Qiuyu Zhang
    Objective Fibroblast-like synoviocytes (FLS) are a major component of the hyperplastic synovial pannus that aggressively invades cartilage and bone during the course of rheumatoid arthritis (RA). Cyr61 (CCN1) is a product of a growth factor,inducible immediate early gene and is involved in cell adhesion, proliferation, and differentiation. However, the role that Cyr61 plays in FLS proliferation has remained undetermined. The aim of this study was to identify the role of Cyr61 in regulating the proliferation of FLS derived from patients with RA. Methods Expression of Cyr61 in synovial tissue (ST) and in FLS was determined simultaneously using immunohistochemistry, real-time polymerase chain reaction, and Western blotting. Cyr61 levels in synovial fluid (SF) were determined by enzyme-linked immunosorbent assay. FLS proliferation stimulated by SF, Cyr61, and interleukin-17 (IL-17) was measured by thymidine incorporation. Activation of signal transduction pathways was determined by Western blotting and confocal microscopy. Results Cyr61 was overexpressed in ST, FLS, and SF samples from RA patients as compared with samples from normal controls. Elevated levels of Cyr61 in RA SF promoted the proliferation of FLS, an effect that was abrogated by a neutralizing monoclonal antibody against human Cyr61. Furthermore, in samples from RA patients, Cyr61 was found to protect FLS from apoptosis and to sustain the expression of Bcl-2 in FLS. Most importantly, the expression of Cyr61 in FLS was regulated by IL-17 mainly via the p38 MAPK and NF-,B signaling pathways. Knockdown of expression of the Cyr61 gene inhibited IL-17,stimulated FLS proliferation. Conclusion Our findings indicate that Cyr61 plays a critical role in IL-17,mediated proliferation of FLS in RA and likely contributes to hyperplasia of synovial lining cells and eventually to joint destruction in patients with RA. [source]


    Regulation of early response genes in pancreatic acinar cells: external calcium and nuclear calcium signalling aspects

    ACTA PHYSIOLOGICA, Issue 1 2009
    N. Fedirko
    Abstract Nuclear calcium signalling has been an important topic of investigation for many years and some aspects have been the subject of debate. Our data from isolated nuclei suggest that the nuclear pore complexes (NPCs) are open even after depletion of the Ca2+ store in the nuclear envelope (NE). The NE contains ryanodine receptors (RyRs) and Ins(1,4,5)P3 receptors [Ins(1,4,5)P3Rs], most likely on both sides of the NE and these can be activated separately and independently: the RyRs by either NAADP or cADPR, and the Ins(1,4,5)P3Rs by Ins(1,4,5)P3. We have also investigated the possible consequences of nuclear calcium signals: the role of Ca2+ in the regulation of immediate early genes (IEG): c-fos, c-myc and c-jun in pancreatic acinar cells. Stimulation with Ca2+ -mobilizing agonists induced significant increases in levels of expression. Cholecystokinin (CCK) (10 nm) evoked a substantial rise in the expression levels, highly dependent on external Ca2+: the IEG expression level was lowest in Ca2+ -free solution, increased at the physiological level of 1 mm [Ca2+]o and was maximal at 10 mm [Ca2+]o, i.e.: 102 ± 22% and 163 ± 15% for c-fos; c-myc ,73 ± 13% and 106 ± 24%; c-jun ,49 ± 8% and 59 ± 9% at 1 and 10 mm of extracellular Ca2+ respectively. A low CCK concentration (10 pm) induced a small increase in expression. We conclude that extracellular Ca2+ together with nuclear Ca2+ signals induced by CCK play important roles in the induction of IEG expression. [source]


    Transcriptional profiling of brain-derived-neurotrophic factor-induced neuronal plasticity: A novel role for nociceptin in hippocampal neurite outgrowth

    DEVELOPMENTAL NEUROBIOLOGY, Issue 4 2006
    Robert H. Ring
    Abstract Brain derived neurotrophic factor (BDNF) exhibits a sequence of actions on neurons ranging from acute enhancement of transmission to long-term promotion of neurite outgrowth and synaptogenesis associated with learning and memory. The manifold effects of BDNF on neuronal modifications may be mediated by genomic alterations. We previously found that BDNF treatment acutely increases transcription of the synaptic vesicle protein Rab3A, required for trophin-induced synaptic plasticity, as well as the peptide VGF, which increases during learning. To elucidate comprehensive transcriptional programs associated with short- and long-term BDNF exposure, we now examine mRNA abundance and complexity using Affymetrix GeneChips in cultured hippocampal neurons. Consistent with the modulation of synaptic plasticity, BDNF treatment (3,6 h) induced mRNAs encoding the synapse-associated proteins synaptojanin 2, neuronal pentraxin 1, septin 9, and ryanodine receptor 2. BDNF also induced expression of mRNAs encoding neuropeptides (6,12 h), including prepronociceptin, neuropeptide Y, and secretogranin. To determine whether these neuropeptides induced by BDNF mediate neuronal development, we examined their effects on hippocampal neurons. The four mature peptides derived from post-translational processing of the ppNociceptin propeptide induced the expression of several immediate early genes in hippocampal cultures, indicating neuronal activation. To examine the significance of activation, the effects of nociceptin (orphanin FQ) and nocistatin on neurite outgrowth were examined. Quantitative morphometric analysis revealed that nociceptin significantly increased both average neurite length and average number of neurites per neuron, while nocistatin had no effect on these parameters. These results reveal a novel role for nociceptin and suggest that these neuropeptide systems may contribute to the regulation of neuronal function by BDNF. © 2006 Wiley Periodicals, Inc. J Neurobiol, 2006 [source]


    Immediate early gene (ZENK, Arc) expression in the auditory forebrain of female canaries varies in response to male song quality

    DEVELOPMENTAL NEUROBIOLOGY, Issue 3 2005
    Stefan Leitner
    Abstract In male songbirds, the song control pathway in the forebrain is responsible for song production and learning, and in females it is associated with the perception and discrimination of male song. However, experiments using the expression of immediate early genes (IEGs) reveal the activation of brain regions outside the song control system, in particular the caudomedial nidopallium (NCM) and the caudomedial mesopallium (CMM). In this study on female canaries, we investigate the role of these two regions in relation to playback of male songs of different quality. Male canaries produce elaborate songs and some contain syllables with a more complex structure (sexy syllables) that induce females to perform copulation solicitation displays (CSD) as an invitation to mate. Females were first exposed to playback of a range of songs of different quality, before they were finally tested with playback of songs containing either sexy or nonsexy syllables. We then sectioned the brains and used in situ hybridization to reveal brain regions that express the IEGs ZENK or Arc. In CMM, expression of ZENK mRNA was significantly higher in females that last heard sexy syllables compared to those that last heard nonsexy syllables, but this was not the case for NCM. Expression of Arc mRNA revealed no differences in either CMM or NCM in both experimental groups. These results provide evidence that in female canaries CMM is involved in female perception and discrimination of male song quality through a mechanism of memory reconsolidation. The results also have further implications for the evolution of complex songs by sexual selection and female choice. © 2005 Wiley Periodicals, Inc. J Neurobiol, 2005 [source]


    The hippocampus and caudomedial neostriatum show selective responsiveness to conspecific song in the female zebra finch

    DEVELOPMENTAL NEUROBIOLOGY, Issue 1 2002
    David J. Bailey
    Abstract The perception of song is vital to the reproductive success of both male and female songbirds. Several neural structures underlying this perception have been identified by examining expression of immediate early genes (IEGs) following the presentation of conspecific or heterospecific song. In the few avian species investigated, areas outside of the circuit for song production contain neurons that are active following song presentation, specifically the caudal hyperstriatum ventrale (cHV) and caudomedial neostriatum (NCM). While studied in detail in the male zebra finch, IEG responses in these neural substrates involved in song perception have not been quantified in females. Therefore, adult female zebra finches were presented with zebra finch song, nonzebra finch song, randomly generated tones, or silence for 30 min. One hour later they were sacrificed, and their brains removed, sectioned, and immunocytochemically processed for FOS expression. Animals exposed to zebra finch song had a significantly higher density of FOS-immunoreactive cells in the NCM than those presented with other songs, tones, or silence. Neuronal activation in the cHV was equivalent in birds that heard zebra finch and non-zebra finch song, expression that was higher than that observed in the groups that heard no song. Interestingly, the hippocampus (HP) and adjacent parahippocampal area (AHP) were activated in a manner comparable to the NCM. These results suggest a general role for the cHV in song perception and a more specific role for the NCM and HP/AHP in facilitating recognition of and responsiveness to species-specific song in female zebra finches. © 2002 Wiley Periodicals, Inc. J Neurobiol 52: 43,51, 2002 [source]


    Long-term depression activates transcription of immediate early transcription factor genes: involvement of serum response factor/Elk-1

    EUROPEAN JOURNAL OF NEUROSCIENCE, Issue 2 2006
    Antje Lindecke
    Abstract Long-term depression (LTD) is one of the paradigms used in vivo or ex vivo for studying memory formation. In order to identify genes with potential relevance for memory formation we used mouse organotypic hippocampal slice cultures in which chemical LTD was induced by applications of 3,5-dihydroxyphenylglycine (DHPG). The induction of chemical LTD was robust, as monitored electrophysiologically. Gene expression analysis after chemical LTD induction was performed using cDNA microarrays containing >7000 probes. The DHPG-induced expression of immediate early genes (c-fos, junB, egr1 and nr4a1) was subsequently verified by TaqMan polymerase chain reaction. Bioinformatic analysis suggested a common regulator element [serum response factor (SRF)/Elk-1 binding sites] within the promoter region of these genes. Indeed, here we could show a DHPG-dependent binding of SRF at the SRF response element (SRE) site within the promoter region of c-fos and junB. However, SRF binding to egr1 promoter sites was constitutive. The phosphorylation of the ternary complex factor Elk-1 and its localization in the nucleus of hippocampal neurones after DHPG treatment was shown by immunofluorescence using a phosphospecific antibody. We suggest that LTD leads to SRF/Elk-1-regulated gene expression of immediate early transcription factors, which could in turn promote a second broader wave of gene expression. [source]


    Identification of Novel Regulators Associated With Early-Phase Osteoblast Differentiation,

    JOURNAL OF BONE AND MINERAL RESEARCH, Issue 6 2004
    Diana S de Jong
    Abstract Key regulatory components of the BMP-induced osteoblast differentiation cascade remain to be established. Microarray and subsequent expression analyses in mice identified two transcription factors, Hey1 and Tcf7, with in vitro and in vivo expression characteristics very similar to Cbfa1. Transfection studies suggest that Tcf7 modulates BMP2-induced osteoblast differentiation. This study contributes to a better definition of the onset of BMP-induced osteoblast differentiation. Introduction: Elucidation of the genetic cascade guiding mesenchymal stem cells to become osteoblasts is of extreme importance for improving the treatment of bone-related diseases such as osteoporosis. The aim of this study was to identify regulators of the early phases of bone morphogenetic protein (BMP)2-induced osteoblast differentiation. Materials and Methods: Osteoblast differentiation of mouse C2C12 cells was induced by treatment with BMP2, and regulation of gene expression was studied during the subsequent 24 h using high-density microarrays. The regulated genes were grouped by means of model-based clustering, and protein functions were assigned. Real-time quantitative RT-PCR analysis was used to validate BMP2-induced gene expression patterns in C2C12 cells. Osteoblast specificity was studied by comparing these expression patterns with those in C3H10T1/2 and NIH3T3 cells under similar conditions. In situ hybridization of mRNA in embryos at embryonic day (E)14.5 and E16.5 of gestation and on newborn mouse tails were used to study in vivo expression patterns. Cells constitutively expressing the regulated gene Tcf7 were used to investigate its influence on BMP-induced osteoblast differentiation. Results and Conclusions: A total of 184 genes and expressed sequence tags (ESTs) were differentially expressed in the first 24 h after BMP2 treatment and grouped in subsets of immediate early, intermediate early, and late early response genes. Signal transduction regulatory factors mainly represented the subset of immediate early genes. Regulation of expression of these genes was direct, independent of de novo protein synthesis and independent of the cell type studied. The intermediate early and late early genes consisted primarily of genes related to processes that modulate morphology, basement membrane formation, and synthesis of extracellular calcified matrix. The late early genes require de novo protein synthesis and show osteoblast specificity. In vivo and in vitro experiments showed that the transcription factors Hey1 and Tcf7 exhibited expression characteristics and cell type specificity very similar to those of the osteoblast specific transcription factor Cbfa1, and constitutive expression of Tcf7 in C2C12 cells differentially regulated osteoblast differentiation marker genes. [source]


    Interaction of human herpesvirus 6 with human CD34 positive cells

    JOURNAL OF MEDICAL VIROLOGY, Issue 3 2003
    Hiroki Isomura
    Abstract We reported previously that human herpesvirus 6 (HHV-6) suppresses hematopoietic colony formation of erythroid (BFU-E), granulocyte/macrophage (CFU-GM), and megakaryocyte (CFU-Meg) lineages in vitro. Here we describe the interaction between HHV-6 and human CD34+ cells, which are a major source of hematopoietic progenitor cells. CD34+ cells were immunomagnetically isolated from cord blood mononuclear cells using anti-CD34+ antibodies coated onto either DynabeadsÔ or MACS beads. The CD34+ population selected with Dynabeads showed a broad range of fluorescence. The population selected with MACS beads showed a narrow range of fluorescence. After infection with HHV-6, two transcripts of the immediate early genes were detected with both cell populations. HHV-6 suppressed colony formation of BFU-E, CFU-GM, and CFU-Meg. HHV-6 suppressed cell growth after 3 to 7 days culture in the presence of thrombopoietin (TPO). More differentiated CD34+ cells were more susceptible to the effects of HHV-6. These data indicate that the targets for hematopoietic suppression by HHV-6 are the differentiated cells. J. Med. Virol. 70:444,450, 2003. © 2003 Wiley-Liss, Inc. [source]


    GeneChip® analysis after acute spinal cord injury in rat

    JOURNAL OF NEUROCHEMISTRY, Issue 4 2001
    Guoqing Song
    Spinal cord injury (SCI) leads to induction and/or suppression of several genes, the interplay of which governs the neuronal death and subsequent loss of motor function. Using GeneChip®, the present study analyzed changes in the mRNA abundance at 3 and 24 h after SCI in adult rats. SCI was induced at T9 level by the New York University impactor by dropping a 10-g weight from a height of 25 mm. Several transcription factors, immediate early genes, heat-shock proteins, pro-inflammatory genes were up-regulated by 3 h, and persisted at 24 h, after SCI. On the other hand, some neurotransmitter receptors and transporters, ion channels, kinases and structural proteins were down-regulated by 3 h, and persisted at 24 h, after SCI. Several genes that play a role in growth/differentiation, survival and neuroprotection were up-regulated at 24 h after SCI. Using real-time quantitative PCR, the changes observed by GeneChip® were confirmed for seven up-regulated (interleukin-6, heat-shock protein-70, heme oxygenase-1, suppressor of cytokine signaling 2, suppressor of cytokine signaling 3, interferon regulatory factor-1, neuropeptide Y), two down-regulated (vesicular GABA transporter and cholecystokinin precursor) and two unchanged (Cu/Zn-superoxide dismutase and phosphatidyl inositol-3-kinase) genes. The present study shows that inflammation, neurotransmitter dysfunction, increased transcription, ionic imbalance and cytoskeletal damage starts as early as 3 h after SCI. In addition to these effects, 24 h after SCI the repair and regeneration process begins in an attempt to stabilize the injured spinal cord. [source]


    The MAPK pathway is required for depolarization-induced "promiscuous" immediate-early gene expression but not for depolarization-restricted immediate-early gene expression in neurons

    JOURNAL OF NEUROSCIENCE RESEARCH, Issue 3 2008
    Hidevaldo B. Machado
    Abstract Depolarization, growth factors, neurotrophins, and other stimuli induce expression of immediate early genes (IEGs) in neurons. We identified a subset of IEGs, IPD-IEGs, which are induced preferentially by depolarization, but not by neurotrophins or growth factors, in PC12 cells. The "promiscuous" IEGs Egr1 and c-fos, induced by growth factors and neurotrophins, in addition to depolarization, require activation of the MAP kinase signaling pathway for induction in response to KCl depolarization in PC12 cells; MEK1/2 inhibitors block KCl-induced Egr1 and c-fos expression. In contrast, MEK1/2 inhibition has no effect on KCl-induced expression of the known IPD-IEGs in PC12 cells. Additional "candidate" IDP-IEGs were identified by a microarray comparison of genes induced by KCl in the presence vs. the absence of an MEK1/2 inhibitor in PC12 cells. Northern blot analyses demonstrated that representative newly identified candidate IPD-IEGs, as with the known IPD-IEGs, are also induced by a MAP kinase- independent pathway in response to depolarization, both in PC12 cells and in rat primary cortical neurons. Nerve growth factor and epidermal growth factor are unable to induce the expression of the Crem/Icer, Nur77, Nor1, Rgs2, Dusp1 (Mkp1), and Dscr1 genes in PC12 cells, validating their identification as IPD-IEGs. Inhibiting calcium/calmodulin-dependent kinase II (CaMKII), calcineurin, or protein kinase A (PKA) activity prevents KCl-induced IPD-IEG mRNA accumulation, suggesting that the IPD-IEG genes are induced by depolarization in neurons via a combination of calcineurin/PKA- and CaMKII-dependent pathways. © 2007 Wiley-Liss, Inc. [source]


    Morphine activates Arc expression in the mouse striatum and in mouse neuroblastoma Neuro2A MOR1A cells expressing ,-opioid receptors

    JOURNAL OF NEUROSCIENCE RESEARCH, Issue 4 2005
    Barbara Zió, kowska
    Abstract Activity-regulated cytoskeleton-associated protein (Arc) is an effector immediate early gene product implicated in long-term potentiation and other forms of neuroplasticity. Earlier studies demonstrated Arc induction in discrete brain regions by several psychoactive substances, including drugs of abuse. In the present experiments, the influence of morphine on Arc expression was assessed by quantitative reverse transcription real-time PCR and Western blotting in vivo in the mouse striatum/nucleus accumbens and, in vitro, in the mouse Neuro2A MOR1A cell line, expressing ,-opioid receptor. An acute administration of morphine produced a marked increase in Arc mRNA and protein level in the mouse striatum/nucleus accumbens complex. After prolonged opiate treatment, tolerance to the stimulatory effect of morphine on Arc expression developed. No changes in the striatal Arc mRNA levels were observed during spontaneous or opioid antagonist-precipitated morphine withdrawal. In Neuro2A MOR1A cells, acute, but not prolonged, morphine treatment elevated Arc mRNA level by activation of ,-opioid receptor. This was accompanied by a corresponding increase in Arc protein level. Inhibition experiments revealed that morphine induced Arc expression in Neuro2A MOR1A cells via intracellular signaling pathways involving mitogen-activated protein (MAP) kinases and protein kinase C. These results lend further support to the notion that stimulation of opioid receptors may exert an activating influence on some intracellular pathways and leads to induction of immediate early genes. They also demonstrate that Arc is induced in the brain in vivo after morphine administration and thus may play a role in neuroadaptations produced by the drug. © 2005 Wiley-Liss, Inc. [source]


    Exposure to lead elevates induction of zif268 and Arc mRNA in rats after electroconvulsive shock: The involvement of protein kinase C

    JOURNAL OF NEUROSCIENCE RESEARCH, Issue 2 2002
    Kyung-Ah Kim
    Abstract Exposure to lead is well known to impair cognitive function in young children. Because of the importance of gene regulation for neurodevelopment, we examined the effect of lead on the induction of the mRNA of the immediate early genes zif268 and Arc. The time course for the induction of zif268 mRNA and Arc mRNA by electroconvulsant shock (ECS) was altered in the area of the dentate gyrus of the hippocampus in rats exposed to lead from postnatal days (PND) 1 to 28. Other areas of the hippocampus were not affected by lead. The effects on the induction of zif268 mRNA were observed at blood lead levels as low as 12 ,g/dl. No change in the induction of zif268 mRNA was observed in the hippocampus of rats exposed to lead from PND 28 to PND 56. Because of the possible involvement of protein kinase C (PKC) in the effect of lead, activation of different isoforms of PKC was investigated. An increase in the amount of PKC, and PKC, was observed at 60 min after ECS in the membrane fraction from hippocampus, indicating activation of these isoforms. The amount of PKC, in membranes was higher in rats exposed to lead than in rats not exposed to lead after ECS. Taken together, the data suggest that lead may disturb regulation of specific immediate early genes by activating PKC,. © 2002 Wiley-Liss, Inc. [source]


    The dusp1 immediate early gene is regulated by natural stimuli predominantly in sensory input neurons

    THE JOURNAL OF COMPARATIVE NEUROLOGY, Issue 14 2010
    Haruhito Horita
    Abstract Many immediate early genes (IEGs) have activity-dependent induction in a subset of brain subdivisions or neuron types. However, none have been reported yet with regulation specific to thalamic-recipient sensory neurons of the telencephalon or in the thalamic sensory input neurons themselves. Here, we report the first such gene, dual specificity phosphatase 1 (dusp1). Dusp1 is an inactivator of mitogen-activated protein kinase (MAPK), and MAPK activates expression of egr1, one of the most commonly studied IEGs, as determined in cultured cells. We found that in the brain of naturally behaving songbirds and other avian species, hearing song, seeing visual stimuli, or performing motor behavior caused high dusp1 upregulation, respectively, in auditory, visual, and somatosensory input cell populations of the thalamus and thalamic-recipient sensory neurons of the telencephalic pallium, whereas high egr1 upregulation occurred only in subsequently connected secondary and tertiary sensory neuronal populations of these same pathways. Motor behavior did not induce high levels of dusp1 expression in the motor-associated areas adjacent to song nuclei, where egr1 is upregulated in response to movement. Our analysis of dusp1 expression in mouse brain suggests similar regulation in the sensory input neurons of the thalamus and thalamic-recipient layer IV and VI neurons of the cortex. These findings suggest that dusp1 has specialized regulation to sensory input neurons of the thalamus and telencephalon; they further suggest that this regulation may serve to attenuate stimulus-induced expression of egr1 and other IEGs, leading to unique molecular properties of forebrain sensory input neurons. J. Comp. Neurol. 518:2873,2901, 2010. © 2010 Wiley-Liss, Inc. [source]


    Gene expression signatures in polyarticular juvenile idiopathic arthritis demonstrate disease heterogeneity and offer a molecular classification of disease subsets

    ARTHRITIS & RHEUMATISM, Issue 7 2009
    Thomas A. Griffin
    Objective To determine whether peripheral blood mononuclear cells (PBMCs) from children with recent-onset polyarticular juvenile idiopathic arthritis (JIA) exhibit biologically or clinically informative gene expression signatures. Methods Peripheral blood samples were obtained from 59 healthy children and 61 children with polyarticular JIA prior to treatment with second-line medications, such as methotrexate or biologic agents. RNA was extracted from isolated mononuclear cells, fluorescence labeled, and hybridized to commercial gene expression microarrays (Affymetrix HG-U133 Plus 2.0). Data were analyzed using analysis of variance at a 5% false discovery rate threshold after robust multichip analysis preprocessing and distance-weighted discrimination normalization. Results Initial analysis revealed 873 probe sets for genes that were differentially expressed between polyarticular JIA patients and healthy controls. Hierarchical clustering of these probe sets distinguished 3 subgroups within the polyarticular JIA group. Prototypical patients within each subgroup were identified and used to define subgroup-specific gene expression signatures. One of these signatures was associated with monocyte markers, another with transforming growth factor ,,inducible genes, and a third with immediate early genes. Correlation of gene expression signatures with clinical and biologic features of JIA subgroups suggested relevance to aspects of disease activity and supported the division of polyarticular JIA into distinct subsets. Conclusion Gene expression signatures in PBMCs from patients with recent-onset polyarticular JIA reflect discrete disease processes and offer a molecular classification of disease. [source]