Anatomical Details (anatomical + detail)

Distribution by Scientific Domains
Distribution within Life Sciences


Selected Abstracts


Development of cortical and subcortical brain structures in childhood and adolescence: a structural MRI study

DEVELOPMENTAL MEDICINE & CHILD NEUROLOGY, Issue 1 2002
Elizabeth R Sowell PhD
The purpose of the present study was to describe in greater anatomical detail the changes in brain structure that occur during maturation between childhood and adolescence. High-resolution MRI, tissue classification, and anatomical segmentation of cortical and subcortical regions were used in a sample of 35 normally developing children and adolescents between 7 and 16 years of age (mean age 11 years; 20 males, 15 females). Each cortical and subcortical measure was examined for age and sex effects on raw volumes and on the measures as proportions of total supratentorial cranial volume. Results indicate age-related increases in total supratentorial cranial volume and raw and proportional increases in total cerebral white matter. Gray-matter volume reductions were only observed once variance in total brain size was proportionally controlled. The change in total cerebral white-matter proportion was significantly greater than the change in total cerebral gray-matter proportion over this age range, suggesting that the relative gray-matter reduction is probably due to significant increases in white matter. Total raw cerebral CSF volume increases were also observed. Within the cerebrum, regional patterns varied depending on the tissue (or CSF) assessed. Only frontal and parietal cortices showed changes in gray matter, white matter, and CSF measures. Once the approximately 7% larger brain volume in males was controlled, only mesial temporal cortex, caudate, thalamus, and basomesial diencephalic structures showed sex effects with the females having greater relative volumes in these regions than the males. Overall, these results are consistent with earlier reports and describe in greater detail the regional pattern of age-related differences in gray and white matter in normally developing children and adolescents. [source]


Quantifying temporal bone morphology of great apes and humans: an approach using geometric morphometrics

JOURNAL OF ANATOMY, Issue 6 2002
Charles A. Lockwood
Abstract The hominid temporal bone offers a complex array of morphology that is linked to several different functional systems. Its frequent preservation in the fossil record gives the temporal bone added significance in the study of human evolution, but its morphology has proven difficult to quantify. In this study we use techniques of 3D geometric morphometrics to quantify differences among humans and great apes and discuss the results in a phylogenetic context. Twenty-three landmarks on the ectocranial surface of the temporal bone provide a high level of anatomical detail. Generalized Procrustes analysis (GPA) is used to register (adjust for position, orientation and scale) landmark data from 405 adults representing Homo, Pan, Gorilla and Pongo. Principal components analysis of residuals from the GPA shows that the major source of variation is between humans and apes. Human characteristics such as a coronally orientated petrous axis, a deep mandibular fossa, a projecting mastoid process, and reduced lateral extension of the tympanic element strongly impact the analysis. In phenetic cluster analyses, gorillas and orangutans group together with respect to chimpanzees, and all apes group together with respect to humans. Thus, the analysis contradicts depictions of African apes as a single morphotype. Gorillas and orangutans lack the extensive preglenoid surface of chimpanzees, and their mastoid processes are less medially inflected. These and other characters shared by gorillas and orangutans are probably primitive for the African hominid clade. [source]


A cranial base of Australopithecus robustus from the hanging remnant of Swartkrans, South Africa

AMERICAN JOURNAL OF PHYSICAL ANTHROPOLOGY, Issue 4 2006
Darryl J. de Ruiter
Abstract SKW 18, a partial hominin cranium recovered from the site of Swartkrans, South Africa, in 1968 is described. It is derived from ex situ breccia of the Hanging Remnant of Member 1, dated to approximately 1.5,1.8 Mya. Although partially encased in breccia, it was refit to the facial fragment SK 52 (Clarke 1977 The Cranium of the Swartkrans Hominid SK 847 and Its Relevance to Human Origins, Ph.D. dissertation, University of the Witwatersrand, Johannesburg), producing the composite cranium SKW 18/SK 52. Subsequent preparation revealed the most complete cranial base attributable to the species Australopithecus robustus. SKW 18 suffered weathering and slight postdepositional distortion, but retains considerable anatomical detail. The composite cranium most likely represents a large, subadult male, based on the incomplete fusion of the spheno-occipital synchondrosis; unerupted third molar; pronounced development of muscular insertions; and large teeth. Cranial base measures of SKW 18 expand the range of values previously recorded for A. robustus. SKW 18 provides information on anatomical features not previously visible in this taxon, and expands our knowledge of morphological variability recognizable in the cranial base. Morphological heterogeneity in the development of the prevertebral and nuchal muscular insertions is likely the result of sexual dimorphism in A. robustus, while differences in cranial base angles and the development of the occipital/marginal sinus drainage system cannot be attributed to size dimorphism. Am J Phys Anthropol, 2006. © 2006 Wiley-Liss, Inc. [source]


Reviewing the vascular supply of the anterior abdominal wall: Redefining anatomy for increasingly refined surgery

CLINICAL ANATOMY, Issue 2 2008
W.M. Rozen
Abstract The abdominal wall integument is becoming the standard donor tissue for postmastectomy breast reconstruction, with its vascular supply of key importance to the reconstructive surgeon. Refinements in tissue transfer, from pedicled to free flaps and musculocutaneous to perforator flaps, have required increasing understanding of finer levels of this vascular anatomy. The widespread utilization of the deep inferior epigastric artery (DIEA) perforator flap, particularly for breast reconstruction, has rekindled clinical interest in further levels of anatomical detail, in particular the location and course of the musculocutaneous perforators of the DIEA. Advances in operative techniques, and anatomical and imaging technologies, have facilitated an increase in this understanding. The current review comprises an appraisal of both the anatomical and clinical literature, with a view to highlighting the key anatomical features of the abdominal wall vasculature as related to reconstructive flaps. Clin. Anat. 21:89,98, 2008. © 2008 Wiley-Liss, Inc. [source]


Eyes and vision in Arion rufus and Deroceras agreste (Mollusca; Gastropoda; Pulmonata): What role does photoreception play in the orientation of these terrestrial slugs?

ACTA ZOOLOGICA, Issue 2 2009
Marina V. Zieger
Abstract This paper deals with the orientational behaviour in the two terrestrial slugs Arion rufus and Deroceras agreste. It presents anatomical details of their eyes and provides an appraisal of the eyes' optical system. In both species the retinae contain two principal types of cell: photoreceptive and pigmented supportive cells. While only the eye of A. rufus apparently contains neurosecretory neurones, that of D. agreste is the only one equipped with a small additional retina with its own separate lens. Lens shapes vary between ovoid (A. rufus) and spherical (D. agreste). Our results demonstrate that the camera-type eyes in A. rufus and D. agreste have optical systems that do not allow the production of a sharp image on the retina. The slugs demonstrate negative visually mediated phototactic behaviour, but no polarization sensitivity. Only one aspect of the visual environment, namely the overall distribution of light and dark, seems to be important for these slugs. As the main role of the slugs' photoreceptors is to monitor environmental brightness and to assist the animal in orientating towards dark places, we conclude that these slugs do not need to perceive sharp images. [source]


Functional segmentation of the brain cortex using high model order group PICA

HUMAN BRAIN MAPPING, Issue 12 2009
Vesa Kiviniemi
Abstract Baseline activity of resting state brain networks (RSN) in a resting subject has become one of the fastest growing research topics in neuroimaging. It has been shown that up to 12 RSNs can be differentiated using an independent component analysis (ICA) of the blood oxygen level dependent (BOLD) resting state data. In this study, we investigate how many RSN signal sources can be separated from the entire brain cortex using high dimension ICA analysis from a group dataset. Group data from 55 subjects was analyzed using temporal concatenation and a probabilistic independent component analysis algorithm. ICA repeatability testing verified that 60 of the 70 computed components were robustly detectable. Forty-two independent signal sources were identifiable as RSN, and 28 were related to artifacts or other noninterest sources (non-RSN). The depicted RSNs bore a closer match to functional neuroanatomy than the previously reported RSN components. The non-RSN sources have significantly lower temporal intersource connectivity than the RSN (P < 0.0003). We conclude that the high model order ICA of the group BOLD data enables functional segmentation of the brain cortex. The method enables new approaches to causality and connectivity analysis with more specific anatomical details. Hum Brain Mapp, 2009. © 2009 Wiley-Liss, Inc. [source]


Differential dye coupling reveals lateral giant escape circuit in crayfish

THE JOURNAL OF COMPARATIVE NEUROLOGY, Issue 1 2003
Brian L. Antonsen
Abstract The lateral giant (LG) escape circuit of crayfish mediates a coordinated escape triggered by strong attack to the abdomen. The LG circuit is one of the best understood of small systems, but models of the circuit have mostly been limited to simple ball-and-stick representations, which ignore anatomical details of contacts between circuit elements. Many of the these contacts are electrical; here we use differential dye coupling, a technique which could help reveal connection patterns in many neural circuits, to reveal in detail the circuit within the terminal abdominal ganglion. Sensory input from the tailfan forms a somatotopic map on the projecting LG dendrites, which together with interafferent coupling mediates a lateral excitatory network that selectively amplifies strong, phasic, converging input to LG. Mechanosensory interneurons contact LG at sites distinct from the primary afferents and so maximize their summated effect on LG. Motor neurons and premotor interneurons are excited near the initial segments of the LGs and innervate muscles for generating uropod flaring and telson flexion. Previous research has shown that spatial patterns of input are important for signal integration in LG; this map of electrical contact points will help us to understand synaptic processing in this system. J. Comp. Neurol. 466:1,13, 2003. © 2003 Wiley-Liss, Inc. [source]


Front and Back Covers, Volume 26, Number 5.

ANTHROPOLOGY TODAY, Issue 5 2010
October 2010
Front and back cover caption, volume 26 issue 5 Front cover RETHINKING SUICIDE BOMBING The body is a key focus for anthropological research and analysis. The cover photographs highlight the way multiple aspects of life, including political life, are mapped onto the body, and the emergence of a collective, as well as individual, identity through these experiences. The front cover shows a young Palestinian boy staring at an Israeli guard's gun, inches from his face, while waiting at the Abu Dis checkpoint in East Jerusalem. Although the scene is calm, the photograph captures an implicit violence (any step out of line can and will be punished) and reveals the daily reality of political and structural violence in the lives of Palestinians. In this image, the child can be seen as an individual who may experience personal trauma as a result of these daily encounters with violence. But he can also be seen as representing a collective Palestinian body which, under the occupation, is humiliated and forced into a childlike position, with daily decisions, including over movement, entirely in the control of Israeli forces. In her article in this issue, Natalia Linos calls on anthropology to offer a critical analysis of suicide bombing and examine the central role of the body in this act. She posits that in a context of political and structural violence that encroaches on both individual and group identity, suicide attacks may be considered an extreme form of reclaiming the violated body through self-directed violence. Through suicide attacks in public spaces, the body may be used to contest physical barriers imposed by an oppressor, resist power imbalances, and reclaim authority over one's body as well as geographical space. Back cover ASSEMBLING BODIES The back cover shows a South African ,body map', on display at the University of Cambridge Museum of Archaeology and Anthropology (MAA) until 6 November 2010 as part of the exhibition ,Assembling bodies: Art, science and imagination', reviewed in this issue. This self-portrait by Babalwa depicts her life as an activist and epitomizes the ethical and political negotiations that surround definition and treatment of particular bodies in contemporary South Africa. Babalwa was a member of the Treatment Action Campaign (TAC), which successfully campaigned for the widespread availability of antiretroviral treatment therapies. Her self-portrait is one of a series of life-sized body maps made by members of the Bambanani Womens Group in 2003, as part of a project documenting the lives of women with HIV/AIDS. The body maps and associated narratives trace the co-existence of multiple ways of understanding and experiencing bodies and disease in these women's lives. The imagery , referring to family and friends, political life, biomedical science, anatomical details, moral pollution and religious beliefs , suggests many bodies existing within a single corporeal form. In addition to revealing individual subjectivities, the body maps also highlight the shifting dynamics of sociality. Behind each self-portrait is the outline of another shadowy form, a reminder of the help received and the potential for future support. [source]


Three-dimensional deformation-based hippocampal surface anatomy, projected on MRI images

CLINICAL ANATOMY, Issue 7 2005
Robert Gardner
Abstract The objectives of the present study were to illustrate three-dimensional hippocampal surface anatomy using deformation-based composite segmentations, superimposed on two-dimensional MRI (magnetic resonance images) in standard and oblique planes. The hippocampi from five normal volumetric MRI studies were segmented using a semiautomated, deformation-based technique. Segmentations were then processed to combine hippocampal surfaces, generating a composite (or average) deformation for each of the five left and five right hippocampi. Composite hippocampal surfaces were then projected on two-dimensional MRIs, with verification of projections using three-dimensional coordinate data. Composite hippocampal surfaces show anatomical details of hippocampal substructures, including the pes hippocampi, intralimbic gyrus, and uncinate gyrus. Projection on two-dimensional MRI helps to define hippocampal anatomy in relationship to surrounding structures. Composite images highlight specific features of normal hippocampal surface anatomy, and demonstrate the structural relationship of the hippocampus to surrounding structures on MRI. Clin. Anat. 18:481,487, 2005. © 2005 Wiley-Liss, Inc. [source]