Anabolic Effects (anabolic + effects)

Distribution by Scientific Domains


Selected Abstracts


Insulin-Like Growth Factor I Production Is Essential for Anabolic Effects of Thyroid Hormone in Osteoblasts,

JOURNAL OF BONE AND MINERAL RESEARCH, Issue 2 2000
Bill K. Huang
Abstract Thyroid hormone (T3) and insulin-like growth factor I (IGF-I) are critical regulators of skeletal function. T3 increases IGF-I production in bone. To assess the potential role of IGF-I as a mediator of T3 actions, we characterized phenotypic markers of osteoblast activity in two osteoblast models, normal mouse osteoblasts and MC3T3-E1 cells, exposed to T3 alone or under conditions that interfere with IGF-I actions. T3 significantly increased osteoblast 3H-proline incorporation, alkaline phosphatase (ALP), and osteocalcin. Both ,IR3, a neutralizing monoclonal antibody to the IGF-I receptor, and JB1, an IGF-I analogue antagonist, attenuated the stimulatory effects of T3. T3 effects also were decreased in cells transfected with antisense oligonucleotide (AS-ODN) to the IGF-I receptor gene. Both IGF-I and T3 had mitogenic effects that were inhibited by the antagonists. IGF-I by itself did not stimulate 3H-proline incorporation, ALP, and osteocalcin in the models used, revealing that although IGF-I is essential for the anabolic effects of T3, it acts in concert with other factors to elicit these phenotypic responses. (J Bone Miner Res 2000;15:188,197) [source]


Teriparatide (Biosynthetic Human Parathyroid Hormone 1,34): A New Paradigm in the Treatment of Osteoporosis

BASIC AND CLINICAL PHARMACOLOGY & TOXICOLOGY, Issue 6 2004
Kim T. Brixen
Biosynthetic human parathyroid hormone 1,34 (teriparatide) was recently approved in the EU and the USA as the first anabolic treatment of osteoporosis. The effects of teriparatide are mediated by the G-protein-dependent, parathyroid hormone receptor-1 in the cell membrane. The binding of the ligand to the receptor activates adenylate cyclase and a number of phospholipases (A, C, and D) and increases intracellular levels of cAMP and calcium. Intermittent teriparatide increases the number of osteoblasts and bone formation by activation of pre-existing osteoblasts, increased differentiation of lining cells, and reduced osteoblast apoptosis. Anabolic effects of teriparatide on bone have been demonstrated in several species. It increases bone mass, structural integrity, bone diameter, and bone strength. Clinical efficacy was demonstrated in a randomized study comprising 1637 post-menopausal women with osteoporosis showing a 65% and 35% reduction of the relative risk of vertebral and appendicular fractures, respectively, during 18 months of treatment. Moreover, bone mineral density in the lumbar spine and hip increased by 9.7% and 2.6%, respectively. Similar effects on bone mineral density have been reported in men with osteoporosis and in glucocorticoid-induced osteoporosis, however, fracture data are limited in these groups. Direct comparison with alendronate revealed that teriparatide has a more pronounced effect on bone mineral density. Teriparatide should be used in combination with calcium plus vitamin D, and may be combined with hormonal replacement therapy. In contrast, alendronate attenuates the effect of teriparatide. The efficacy of other combinations remains uncertain. After termination of teriparatide, bone mineral density of the lumbar spine is reduced by approximately 2,3% after 2 1/2 years. This decrease is prevented by treatment with bisphosphonates. The most frequent adverse effects with teriparatide are nausea, headache, dizziness, and leg cramps, however, only the latter two differed significantly between the groups receiving teriparatide 20 ,g/day and placebo. In the pivotal clinical study, reduced dosage or termination of therapy due to hypercalcaemia was necessary in 3% and 0.2%, respectively. In a rat toxicology study, in which teriparatide was administered in high dosages for an extended period of time, osteosarcoma was seen in a significant number of animals. However, none of the approximately 2800 patients in clinical trials has developed osteosarcoma. Teriparatide constitutes a break-through in the treatment of severe osteoporosis, although a number of issues about the optimal use of teriparatide remains unsettled. The published data provide proof of concept on anabolic therapy which changes several paradigms of bone physiology. Other parathyroid hormone analogues are being investigated in clinical trials and the development of non-peptide, small molecules targeted at the parathyroid hormone receptor may be envisaged. [source]


TGF-,1 alone and in combination with calcium hydroxide is synergistic to TGF-,1 production by osteoblasts in vitro

INTERNATIONAL ENDODONTIC JOURNAL, Issue 5 2000
A. Jaunberzins
Abstract Aim To examine the effects of calcium hydroxide (Ca(OH)2), transforming growth factor-beta (TGF-,1), and Ca(OH)2/TGF-,1 coadministration on TGF-,1 and interleukin-6 (IL-6) synthesis by early (subculture 1) and late (subculture 5) osteoblast cultures. Methodology Early and late cultures were established using bone cells harvested from 21-day-old fetal rat calvaria. Cell cultures of both early and late osteoblasts were divided into four groups: group 1, control; group 2, cells challenged with Ca(OH)2; group 3, cells challenged with TGF-,1; and group 4, cells challenged with Ca(OH)2 and TGF-,1 in combination. TGF-,1 and IL-6 levels for all groups were determined using ELISA methodology. Results anova and Tukey HS analyses revealed that osteoblasts of groups 3 and 4 significantly increased (P < 0.001) TGF-,1 synthesis in both early and late cultures of osteoblasts. IL-6 was not detected in any of the groups considered in this study. Conclusions Exogenous TGF-,1 has an autocrine effect on cell cultures of osteoblasts. Administration of TGF-,1 alone or in combination with Ca(OH)2 increases the synthesis of TGF-,1 in osteoblast cultures. Ca(OH)2 and TGF-,1 are compatible when placed in a culture of osteoblasts. Ca(OH)2 provides a favourable environment for the anabolic effects of TGF-,1. [source]


Increasing Dietary Protein Requirements in Elderly People for Optimal Muscle and Bone Health

JOURNAL OF AMERICAN GERIATRICS SOCIETY, Issue 6 2009
Erin Gaffney-Stomberg MS
Osteoporosis and sarcopenia are degenerative diseases frequently associated with aging. The loss of bone and muscle results in significant morbidity, so preventing or attenuating osteoporosis and sarcopenia is an important public health goal. Dietary protein is crucial for development of bone and muscle, and recent evidence suggests that increasing dietary protein above the current Recommended Dietary Allowance (RDA) may help maintain bone and muscle mass in older individuals. Several epidemiological and clinical studies point to a salutary effect of protein intakes above the current RDA (0.8 g/kg per day) for adults aged 19 and older. There is evidence that the anabolic response of muscle to dietary protein is attenuated in elderly people, and as a result, the amount of protein needed to achieve anabolism is greater. Dietary protein also increases circulating insulin-like growth factor, which has anabolic effects on muscle and bone. Furthermore, increasing dietary protein increases calcium absorption, which could be anabolic for bone. Available evidence supports a beneficial effect of short-term protein intakes up to 1.6 to 1.8 g/kg per day, although long-term studies are needed to show safety and efficacy. Future studies should employ functional measures indicative of protein adequacy, as well as measures of muscle protein synthesis and maintenance of muscle and bone tissue, to determine the optimal level of dietary protein. Given the available data, increasing the RDA for older individuals to 1.0 to 1.2 g/kg per day would maintain normal calcium metabolism and nitrogen balance without affecting renal function and may represent a compromise while longer-term protein supplement trials are pending. J Am Geriatr Soc 57:1073,1079, 2009. [source]


Overexpression of secreted frizzled-related protein 1 inhibits bone formation and attenuates parathyroid hormone bone anabolic effects

JOURNAL OF BONE AND MINERAL RESEARCH, Issue 2 2010
Wei Yao
Abstract Secreted frizzled-related protein 1 (sFRP1) is an antagonist of Wnt signaling, an important pathway in maintaining bone homeostasis. In this study we evaluated the skeletal phenotype of mice overexpressing sFRP1 (sFRP1 Tg) and the interaction of parathyroid hormone (PTH) treatment and sFRP1 (over)expression. Bone mass and microarchitecture were measured by micro-computed tomography (µCT). Osteoblastic and osteoclastic cell maturation and function were assessed in primary bone marrow cell cultures. Bone turnover was assessed by biochemical markers and dynamic bone histomorphometry. Real-time PCR was used to monitor the expression of several genes that regulate osteoblast maturation and function in whole bone. We found that trabecular bone mass measurements in distal femurs and lumbar vertebral bodies were 22% and 51% lower in female and 9% and 33% lower in male sFRP1 Tg mice, respectively, compared with wild-type (WT) controls at 3 months of age. Genes associated with osteoblast maturation and function, serum bone formation markers, and surface based bone formation were significantly decreased in sFRP1 Tg mice of both sexes. Bone resorption was similar between sFRP1 Tg and WT females and was higher in sFRP1 Tg male mice. Treatment with hPTH(1-34) (40,µg/kg/d) for 2 weeks increased trabecular bone volume in WT mice (females: +30% to 50%; males: +35% to 150%) compared with sFRP1 Tg mice (females: +5%; males: +18% to 54%). Percentage increases in bone formation also were lower in PTH-treated sFRP1 Tg mice compared with PTH-treated WT mice. In conclusion, overexpression of sFRP1 inhibited bone formation as well as attenuated PTH anabolic action on bone. The gender differences in the bone phenotype of the sFRP1 Tg animal warrants further investigation. © 2010 American Society for Bone and Mineral Research [source]


Osteoporosis in Patients With Diabetes Mellitus,

JOURNAL OF BONE AND MINERAL RESEARCH, Issue 9 2007
Lorenz C Hofbauer MD
Abstract Demographic trends with longer life expectancy and a lifestyle characterized by low physical activity and high-energy food intake contribute to an increasing incidence of diabetes mellitus and osteoporosis. Diabetes mellitus is a risk factor for osteoporotic fractures. Patients with recent onset of type 1 diabetes mellitus may have impaired bone formation because of the absence of the anabolic effects of insulin and amylin, whereas in long-standing type 1 diabetes mellitus, vascular complications may account for low bone mass and increased fracture risk. Patients with type 2 diabetes mellitus display an increased fracture risk despite a higher BMD, which is mainly attributable to the increased risk of falling. Strategies to improve BMD and to prevent osteoporotic fractures in patients with type 1 diabetes mellitus may include optimal glycemic control and aggressive prevention and treatment of vascular complications. Patients with type 2 diabetes mellitus may additionally benefit from early visual assessment, regular exercise to improve muscle strength and balance, and specific measures for preventing falls. [source]


Thyroid-Stimulating Hormone Restores Bone Volume, Microarchitecture, and Strength in Aged Ovariectomized Rats*,,§

JOURNAL OF BONE AND MINERAL RESEARCH, Issue 6 2007
T Kuber Sampath PhD
Abstract We show the systemic administration of low levels of TSH increases bone volume and improves bone microarchitecture and strength in aged OVX rats. TSH's actions are mediated by its inhibitory effects on RANKL-induced osteoclast formation and bone resorption coupled with stimulatory effects on osteoblast differentiation and bone formation, suggesting TSH directly affects bone remodeling in vivo. Introduction: Thyroid-stimulating hormone (TSH) receptor haploinsufficient mice with normal circulating thyroid hormone levels have reduced bone mass, suggesting that TSH directly affects bone remodeling. We examined whether systemic TSH administration restored bone volume in aged ovariectomized (OVX) rats and influenced osteoclast formation and osteoblast differentiation in vitro. Materials and Methods: Sprague-Dawley rats were OVX at 6 months, and TSH therapy was started immediately after surgery (prevention mode; n = 80) or 7 mo later (restoration mode; n = 152). Hind limbs and lumbar spine BMD was measured at 2- or 4-wk intervals in vivo and ex vivo on termination at 8,16 wk. Long bones were subjected to ,CT, histomorphometric, and biomechanical analyses. The direct effect of TSH was examined in osteoclast and osteoblast progenitor cultures and established rat osteosarcoma-derived osteoblastic cells. Data were analyzed by ANOVA Dunnett test. Results: In the prevention mode, low doses (0.1 and 0.3 ,g) of native rat TSH prevented the progressive bone loss, and importantly, did not increase serum triiodothyroxine (T3) and thyroxine (T4) levels in aged OVX rats. In restoration mode, animals receiving 0.1 and 0.3 ,g TSH had increased BMD (10,11%), trabecular bone volume (100,130%), trabecular number (25,40%), trabecular thickness (45,60%), cortical thickness (5,16%), mineral apposition and bone formation rate (200,300%), and enhanced mechanical strength of the femur (51,60%) compared with control OVX rats. In vitro studies suggest that TSH's action is mediated by its inhibitory effects on RANKL-induced osteoclast formation, as shown in hematopoietic stem cells cultivated from TSH-treated OVX rats. TSH also stimulates osteoblast differentiation, as shown by effects on alkaline phosphatase activity, osteocalcin expression, and mineralization rate. Conclusions: These results show for the first time that systemically administered TSH prevents bone loss and restores bone mass in aged OVX rats through both antiresorptive and anabolic effects on bone remodeling. [source]


A Nonprostanoid EP4 Receptor Selective Prostaglandin E2 Agonist Restores Bone Mass and Strength in Aged, Ovariectomized Rats

JOURNAL OF BONE AND MINERAL RESEARCH, Issue 4 2006
Hua Zhu Ke MD
Abstract CP432 is a newly discovered, nonprostanoid EP4 receptor selective prostaglandin E2 agonist. CP432 stimulates trabecular and cortical bone formation and restores bone mass and bone strength in aged ovariectomized rats with established osteopenia. Introduction: The purpose of this study was to determine whether a newly discovered, nonprostanoid EP4 receptor selective prostaglandin E2 (PGE2) agonist, CP432, could produce bone anabolic effects in aged, ovariectomized (OVX) rats with established osteopenia. Materials and Methods: CP432 at 0.3, 1, or 3 mg/kg/day was given for 6 weeks by subcutaneous injection to 12-month-old rats that had been OVX for 8.5 months. The effects on bone mass, bone formation, bone resorption, and bone strength were determined. Results: Total femoral BMD increased significantly in OVX rats treated with CP432 at all doses. CP432 completely restored trabecular bone volume of the third lumbar vertebral body accompanied with a dose-dependent decrease in osteoclast number and osteoclast surface and a dose-dependent increase in mineralizing surface, mineral apposition rate, and bone formation rate-tissue reference in OVX rats. CP432 at 1 and 3 mg/kg/day significantly increased total tissue area, cortical bone area, and periosteal and endocortical bone formation in the tibial shafts compared with both sham and OVX controls. CP432 at all doses significantly and dose-dependently increased ultimate strength in the fifth lumber vertebral body compared with both sham and OVX controls. At 1 and 3 mg/kg/day, CP432 significantly increased maximal load in a three-point bending test of femoral shaft compared with both sham and OVX controls. Conclusions: CP432 completely restored trabecular and cortical bone mass and strength in established osteopenic, aged OVX rats by stimulating bone formation and inhibiting bone resorption on trabecular and cortical surfaces. [source]


Insulin-Like Growth Factor I Production Is Essential for Anabolic Effects of Thyroid Hormone in Osteoblasts,

JOURNAL OF BONE AND MINERAL RESEARCH, Issue 2 2000
Bill K. Huang
Abstract Thyroid hormone (T3) and insulin-like growth factor I (IGF-I) are critical regulators of skeletal function. T3 increases IGF-I production in bone. To assess the potential role of IGF-I as a mediator of T3 actions, we characterized phenotypic markers of osteoblast activity in two osteoblast models, normal mouse osteoblasts and MC3T3-E1 cells, exposed to T3 alone or under conditions that interfere with IGF-I actions. T3 significantly increased osteoblast 3H-proline incorporation, alkaline phosphatase (ALP), and osteocalcin. Both ,IR3, a neutralizing monoclonal antibody to the IGF-I receptor, and JB1, an IGF-I analogue antagonist, attenuated the stimulatory effects of T3. T3 effects also were decreased in cells transfected with antisense oligonucleotide (AS-ODN) to the IGF-I receptor gene. Both IGF-I and T3 had mitogenic effects that were inhibited by the antagonists. IGF-I by itself did not stimulate 3H-proline incorporation, ALP, and osteocalcin in the models used, revealing that although IGF-I is essential for the anabolic effects of T3, it acts in concert with other factors to elicit these phenotypic responses. (J Bone Miner Res 2000;15:188,197) [source]


FGF and FGFR signaling in chondrodysplasias and craniosynostosis

JOURNAL OF CELLULAR BIOCHEMISTRY, Issue 5 2005
P.J. Marie
Abstract The first experimental mouse model for FGF2 in bone dysplasia was made serendipitously by overexpression of FGF from a constitutive promoter. The results were not widely accepted, rightfully drew skepticism, and were difficult to publish; because of over 2,000 studies published on FGF-2 at the time (1993), only a few reported a role of FGF-2 in bone growth and differentiation. However, mapping of human dwarfisms to mutations of the FGFRs shortly, thereafter, made the case that bone growth and remodeling was a major physiological function for FGF. Subsequent production of numerous transgenic and targeted null mice for several genes in the bone growth and remodeling pathways have marvelously elucidated the role of FGFs and their interactions with other genes. Indeed, studies of the FGF pathway present one of the best success stories for use of experimental genetics in functionally parsing morphogenetic regulatory pathways. What remains largely unresolved is the pleiotropic nature of FGF-2. How does it accelerate growth in one cell then stimulate apoptosis or retard growth for another cell in the same type of tissue? Some of the answers may come through distinguishing the FGF-2 protein isoforms, made from alternative translation start sites, these appear to have substantially different functions. Although we have made substantial progress, there is still much to be learned regarding FGF-2 as a most complex, enigmatic protein. Studies of genetic models in mice and human FGFR mutations have provided strong evidence that FGFRs are important modulators of osteoblast function during membranous bone formation. However, there is some controversy regarding the effects of FGFR signaling in human and murine genetic models. Although significant progress has been made in our understanding of FGFR signaling, several questions remain concerning the signaling pathways involved in osteoblast regulation by activated FGFR. Additionally, little is known about the specific role of FGFR target genes involved in cranial bone formation. These issues need to be addressed in future in in vitro and in vivo approaches to better understand the molecular mechanisms of action of FGFR signaling in osteoblasts that result in anabolic effects in bone formation. J. Cell. Biochem. © 2005 Wiley-Liss, Inc. [source]


Carboxy-terminal fragment of osteogenic growth peptide regulates myeloid differentiation through RhoA

JOURNAL OF CELLULAR BIOCHEMISTRY, Issue 6 2004
Letizia Mattii
Abstract The carboxy-terminal fragment of osteogenic growth peptide, OGP(10,14), is a pentapeptide with bone anabolic effects and hematopoietic activity. The latter activity appears to be largely enhanced by specific growth factors. To study the direct activity of OGP(10,14) on myeloid cells, we tested the pentapeptide proliferating/differentiating effects in HL60 cell line. In this cell line, OGP(10,14) significantly inhibited cell proliferation, and enhanced myeloperoxidase (MPO) activity and nitroblue tetrazolium reducing ability. Moreover, it induced cytoskeleton remodeling and small GTP-binding protein RhoA activation. RhoA, which is known to be involved in HL60 differentiation, mediated these effects as shown by using its specific inhibitor, C3. Treatment with GM-CSF had a comparable OGP(10,14) activity on proliferation, MPO expression, and RhoA activation. Further studies on cell proliferation and RhoA activation proved enhanced activity by association of the two factors. These results strongly suggest that OGP(10,14) acts directly on HL60 cells by activating RhoA signaling although other possibilities cannot be ruled out. © 2004 Wiley-Liss, Inc. [source]


Rapamycin impairs trabecular bone acquisition from high-dose but not low-dose intermittent parathyroid hormone treatment

JOURNAL OF CELLULAR PHYSIOLOGY, Issue 3 2009
P.J. Niziolek
The osteo-anabolic effects of intermittent parathyroid hormone (PTH) treatment require insulin-like growth factor (IGF) signaling through the IGF-I receptor. A major downstream target of the IGF-I receptor (via Akt) is the mammalian target of rapamycin (mTOR), a kinase involved in protein synthesis. We investigated whether the bone-building effects of intermittent PTH require functional mTOR signaling. Mice were treated with daily PTH 1,34 (0, 10, 30, or 90,µg/kg) for 6 weeks in the presence or absence of rapamycin, a selective inhibitor of mTOR. We found that all PTH doses were effective in enhancing bone mass, whether rapamycin was present or not. Rapamycin had little to no effect on the anabolic response at low (10,µg) PTH doses, small effects in a minority of anabolic measures at moderate doses (30,µg), but the anabolic effects of high-dose PTH (90,µg) were consistently and significantly suppressed by rapamycin (,4,36% reduction). Serum levels of Trap5b, a marker of resorption, were significantly enhanced by rapamycin, but these effects were observed whether PTH was absent or present. Our data suggest that intermittent PTH, particularly at lower doses, is effective in building bone mass in the presence of rapamycin. However, the full anabolic effects of higher doses of PTH are significantly suppressed by rapamycin, suggesting that PTH might normally activate additional pathways (including mTOR) for its enhanced high-dose anabolic effects. Clinical doses of intermittent PTH could be an effective treatment for maintaining or increasing bone mass among patients taking rapamycin analogs for unrelated health issues. J. Cell. Physiol. 221: 579,585, 2009. © 2009 Wiley-Liss, Inc. [source]


Topical administration of simvastatin recovers alveolar bone loss in rats

JOURNAL OF PERIODONTAL RESEARCH, Issue 3 2008
H. Seto
Background and Objective:, Simvastatin, a cholesterol-lowering drug, has been reported to show anabolic effects on bone metabolism. We examined the effects of simvastatin in vitro using cultured rat calvaria cells and in vivo using periodontitis-induced rats. Material and Methods:, Alkaline phosphatase activity and bone nodule formation were measured in cultured rat calvaria cells. Nylon ligature was placed around the maxillary molars of Fischer male rats for 20 d to induce alveolar bone resorption. After ligature removal, simvastatin was topically injected into the buccal gingivae for 70 d and then microcomputed tomography and histological examinations were performed. Results:, Simvastatin maintained high alkaline phosphatase activity and increased bone nodule formation in rat calvaria cells in a dose-dependent manner, showing that simvastatin increased and maintained a high level of osteoblastic function. Microcomputed tomography images revealed that treatment with simvastatin recovered the ligature-induced alveolar bone resorption, showing a 46% reversal of bone height. Histological examination clarified that low-mineralized alveolar bone was formed in simvastatin-treated rats. Conclusion:, These findings demonstrate that simvastatin has the potential to stimulate osteoblastic function and that topical administration of simvastatin may be effective for the recovery of alveolar bone loss in rats. [source]


Pharmacokinetics of altrenogest in horses

JOURNAL OF VETERINARY PHARMACOLOGY & THERAPEUTICS, Issue 1 2007
M. MACHNIK
The Federation Equestre Internationale has permitted the use of altrenogest in mares for the control of oestrus. However, altrenogest is also suspicious to misuse in competition horses for its potential anabolic effects and suppression of typical male behaviour, and thus is a controlled drug. To investigate the pharmacokinetics of altrenogest in horses we conducted an elimination study. Five oral doses of 44 ,g/kg altrenogest were administered to 10 horses at a dose interval of 24 h. Following administration blood and urine samples were collected at appropriate intervals. Altrenogest concentrations were measured by liquid chromatography-tandem mass spectrometry. The plasma levels of altrenogest reached maximal concentrations of 23,75 ng/mL. Baseline values were achieved within 3 days after the final administration. Urine peak concentrations of total altrenogest ranged from 823 to 3895 ng/mL. Twelve days after the final administration concentrations were below the limit of detection (ca 2 ng/mL). [source]


Testosterone, physical activity, and somatic outcomes among Filipino males

AMERICAN JOURNAL OF PHYSICAL ANTHROPOLOGY, Issue 4 2010
Lee T. Gettler
Abstract Testosterone (T) facilitates male investment in reproduction in part through its anabolic effects on skeletal muscle. Traits like muscle and strength are energetically costly but are believed to enhance competitive ability in humans and other mammals. However, there are limited data on relationships between T and somatic outcomes in lean, non-western populations. We evaluate relationships between waking and pre-bed salivary T and adiposity, fat-free mass (FFM), arm muscle area (AMA), and grip strength (GS) in a large, population-based birth cohort of young adult Filipino males (20.8,22.6 years, n = 872). Data were collected as part of the Cebu Longitudinal Health and Nutrition Survey. Neither waking nor evening T predicted FFM, AMA, or GS. However, there were borderline or significant interactions between T and basketball playing (the most common team sport) and weight lifting as predictors of outcomes: higher waking T predicted higher FFM (activity × T interaction P < 0.01), AMA (interaction P < 0.1), and GS (interaction P < 0.02) among frequent basketball players, and GS (interaction P < 0.09) among the smaller sample of weight lifters. In contrast to clinical studies, but consistent with findings in several subsistence-level populations, T was positively related to adiposity in these lean young males, suggesting that energy status might regulate circulating T. Our findings support a role of the prewaking rise in T as a determinant of energetic allocation to lean mass and strength in the context of repeated muscular use and support the hypothesized role of T as a mediator of investment in costly somatic traits in human males. Am J Phys Anthropol 142:590,599, 2010. © 2010 Wiley-Liss, Inc. [source]


A role for leucine in rejuvenating the anabolic effects of food in old rats

THE JOURNAL OF PHYSIOLOGY, Issue 2 2005
Michael J. Rennie
No abstract is available for this article. [source]


New and emerging treatments for osteoporosis

CLINICAL ENDOCRINOLOGY, Issue 3 2009
Bart L. Clarke
Summary A variety of new treatments for osteoporosis have become available within the last several years, and a number of emerging treatments remain in late clinical stage development. New and emerging treatments include more potent members, or more convenient formulations, of existing classes of therapy, but a number of the emerging treatments are first-generation compounds addressing specific therapeutic targets based on recent advances in understanding of basic bone biology. These new and emerging treatments include agents with anticatabolic effects, compounds with anabolic effects, and one agent possibly containing both anticatabolic and anabolic effects. The increasing variety of new and emerging treatments increases the possibility that effective therapy will be targeted to the specific needs of the individual patient. [source]