Home About us Contact | |||
III Gene (iii + gene)
Selected AbstractsExpression and characterization of ,-glucosidase III in the dwarf honeybee, Apis florea (Hymenoptera: Apoidea: Apidae)INSECT SCIENCE, Issue 4 2007CHANPEN CHANCHAO Abstract Alpha-glucosidase is synthesized in the hypopharyngeal glands located in the head of worker bees including Apis florea. To analyze the developmental stage-specific expression of the ,-glucosidase gene in A. florea, total RNA was isolated from eggs, and the heads of nurse and forager bees. By reverse transcription polymerase chain reaction (RT-PCR), it was shown that the highest expression levels of the ,-glucosidase III gene, in the three examined developmental stadia, were found in forager bees, with much lower expression levels in nurse bees and no detectable expression in eggs. A complete ,-glucosidase III cDNA was obtained by RT-PCR and sequenced. The 1 701 bp cDNA nucleotide sequence and the predicted 567 amino acids it encodes were assayed by BLASTn, BLASTp and BLASTx programs and revealed a 95% and 94% similarity to the A. mellifera,-glucosidase III gene at the DNA and amino acid sequence levels, respectively. For purification of the active encoded enzyme, forager bee heads were homogenized in sodium phosphate buffer solution and the crude extract (0.30 U/mg) sequentially precipitated with 95% saturated ammonium sulfate (0.18 U/mg), and purified by DEAE cellulose ion exchange chromatography (0.17 U/mg), and gel filtration on Superdex 200 (0.52 U/mg). After resolution through sodium dodecyl sulfate-polyacrylamide gel electrophoresis, a single enzymically active band (73 kDa) was identified from renatured substrate gels. Excision of this band, elution of the protein and tryptic peptide digestives identified by matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOF MS) revealed six matching masses to the A. mellifera (Q17958) and predicted A. florea,-glucosidase III protein with 12% coverage, supporting the probable purification of the same ,-glucosidase III protein as that encoded by the cloned cDNA. [source] Inhibitory effects of antisense oligonucleotides on the expression of procollagen type III gene in mouse hepatic stellate cells transformed by simian virus 40PATHOLOGY INTERNATIONAL, Issue 12 2000Satoshi Horie The effects of phosphorothioate antisense oligonucleotides (ASO), complementary to the AUG start region, the junctional region of the intron and exon, and to exon of the procollagen type III gene, were investigated in a mouse hepatic stellate cell (HSC) line transformed by the simian virus 40 gene, SV68c-IS cells. ASO were transfected by lipofection. Immunohistochemistry, western and northern blotting showed inhibitory effects on procollagen type III gene expression by ASO that were complementary to the AUG start region and the junctional region of the intron and exon 2. However, ASO complementary to the exon 2 and 3, junctional region of the intron and exon 3, and sense oligonucleotides complementary to each ASO did not show any inhibitory effects. The effects of ASO complementary to the AUG start region were greater than those of ASO complementary to the junctional region. The effects of ASO were transient and a large amount of ASO was required to induce inhibitory effects without lipofection. ASO were effective in inhibiting the expression of the procollagen type III gene in the HSC which is well known to play a critical role in liver fibrosis. [source] Transcriptome analysis of Listeria monocytogenes identifies three groups of genes differently regulated by PrfAMOLECULAR MICROBIOLOGY, Issue 6 2003Eliane Milohanic Summary PrfA is the major regulator of Listeria virulence gene expression. This protein is a member of the Crp/Fnr family of transcription regulators. To gain a deeper understanding of the PrfA regulon, we constructed a whole-genome array based on the complete genome sequence of Listeria monocytogenes strain EGDe and evaluated the expression profiles of the wild-type EGDe and a prfA -deleted mutant (EGDe ,prfA). Both strains were grown at 37°C in brain,heart infusion broth (BHI) and BHI supplemented with either activated charcoal, a compound known to enhance virulence gene expression, or cellobiose, a sugar reported to downregulate virulence gene expression in spite of full expression of PrfA. We identified three groups of genes that are regulated differently. Group I comprises, in addition to the 10 already known genes, two new genes, lmo2219 and lmo0788, both positively regulated and preceded by a putative PrfA box. Group II comprises eight negatively regulated genes: lmo0278 is preceded by a putative PrfA box, and the remaining seven genes (lmo0178,lmo0184) are organized in an operon. Group III comprises 53 genes, of which only two (lmo0596 and lmo2067) are preceded by a putative PrfA box. Charcoal addition induced upregulation of group I genes but abolished regulation by PrfA of most group III genes. In the presence of cellobiose, all the group I genes were downregulated, whereas group III genes remained fully activated. Group II genes were repressed in all conditions tested. A comparison of the expression profiles between a second L. monocytogenes strain (P14), its spontaneous mutant expressing a constitutively active PrfA variant (P14prfA*) and its corresponding prfA -deleted mutant (P14,prfA) and the EGDe strain revealed interesting strain-specific differences. Sequences strongly similar to a sigma B-dependent promoter were identified upstream of 22 group III genes. These results suggest that PrfA positively regulates a core set of 12 genes preceded by a PrfA box and probably expressed from a sigma A-dependent promoter. In contrast, a second set of PrfA-regulated genes lack a PrfA box and are expressed from a sigma B-dependent promoter. This study reveals that PrfA can act as an activator or a repressor and suggests that PrfA may directly or indirectly activate different sets of genes in association with different sigma factors. [source] |