Home About us Contact | |||
IGF-I Action (igf-i + action)
Selected AbstractsStimulatory Effect of Insulin-Like Growth Factor Binding Protein-5 on Mouse Osteoclast Formation and Osteoclastic Bone-Resorbing ActivityJOURNAL OF BONE AND MINERAL RESEARCH, Issue 5 2000Masanori Kanatani Abstract Insulin-like growth factor binding protein-5 (IGFBP-5) stimulates osteoblast proliferation directly or indirectly through IGF-I action, but its effects on osteoclast formation and osteoclastic activity are unknown. We tested the effects of IGFBP-5 on osteoclastic activity and osteoclast formation. IGFBP-5 significantly stimulated pit formation by pre-existent osteoclasts in mouse bone cell cultures and its stimulatory effect was completely blocked by IGF-I antibody (Ab). However, IGFBP-5 did not affect the bone-resorbing activity of isolated rabbit osteoclasts. When IGFBP-5 was added to unfractionated bone cells after degeneration of pre-existent osteoclasts, IGFBP-5 (77 pM,7.7 nM) dose-dependently stimulated osteoclast-like cell formation, irrespective of the presence of IGF-I Ab. Moreover, osteoclast-like cells newly formed by IGFBP-5 from unfractionated bone cells possessed the ability to form pits on dentine slices. We next examined the direct effect of IGFBP-5 on osteoclast precursors in the absence of stromal cells, using hemopoietic blast cells derived from spleen cells. IGFBP-5 dose-dependently stimulated osteoclast-like cell formation from osteoclast precursors, irrespective of the presence of IGF-I Ab. Growth hormone (GH) as well as IGF-I significantly stimulated bone resorption by pre-existent osteoclasts in mouse bone cell cultures and these stimulatory effects were completely blocked by IGF-I Ab. GH as well as IGF-I stimulated osteoclast-like cell formation from unfractionated bone cells and this stimulatory effect of GH was significantly but partially blocked by IGF-I Ab. The direct stimulatory effect of GH on osteoclast-like cell formation from hemopoietic blast cells was not affected by IGF-I Ab. The present data indicate that IGFBP-5 stimulates bone resorption both by stimulation of osteoclast formation in an IGF-I,independent fashion and by IGF-I,dependent activation of mature osteoclasts, possibly via osteoblasts, in vitro. (J Bone Miner Res 2000;15:902,910) [source] Insulin-like growth factor-I increases astrocyte intercellular gap junctional communication and connexin43 expression in vitroJOURNAL OF NEUROSCIENCE RESEARCH, Issue 1 2003N. David Åberg Abstract Connexin43 (cx43) forms gap junctions in astrocytes, and these gap junctions mediate intercellular communication by providing transport of low-molecular-weight metabolites and ions. We have recently shown that systemic growth hormone increases cx43 in the brain. One possibility was that local brain insulin-like growth factor-I (IGF-I) could mediate the effect by acting directly on astrocytes. In the present study, we examined the effects of direct application of recombinant human IGF-I (rhIGF-I) on astrocytes in primary culture concerning cx43 protein expression and gap junctional communication (GJC). After 24 hr of stimulation with rhIGF-I under serum-free conditions, the GJC and cx43 protein were analyzed. Administration of 30 ng/ml rhIGF-I increased the GJC and the abundance of cx43 protein. Cell proliferation of the astrocytes was not significantly increased by rhIGF-I at this concentration. However, a higher concentration of rhIGF-I (150 ng/ml) had no effect on GJC/cx43 but increased cell proliferation. Because of the important modulatory role of IGF binding proteins (IGFBPs) on IGF-I action, we analyzed IGFBPs in conditioned media. In cultures with a low abundance of IGFBPs (especially IGFBP-2), the GJC response to 30 ng/ml rhIGF-I was 81%, compared with the average of 25%. Finally, as a control, insulin was given in equimolar concentrations. However, GJC was not affected, which suggests that rhIGF-I acted via IGF-I receptors. In summary, the data show that rhIGF-I may increase GJC/cx43, whereas a higher concentration of rhIGF-I,at which stimulation of proliferation occurred,did not affect GJC/cx43. Furthermore, IGFBP-2 appeared to modulate the action of rhIGF-I on GJC in astrocytes by a paracrine mechanism. © 2003 Wiley-Liss, Inc. [source] ,-catenin mediates insulin-like growth factor-I actions to promote cyclin D1 mRNA expression, cell proliferation and survival in oligodendroglial culturesGLIA, Issue 9 2010Ping Ye Abstract By promoting cell proliferation, survival and maturation insulin-like growth factor (IGF)-I is essential to the normal growth and development of the central nervous system. It is clear that IGF-I actions are primarily mediated by the type I IGF receptor (IGF1R), and that phosphoinositide 3 (PI3)-Akt kinases and MAP kinases signal many of IGF-I-IGF1R actions in neural cells, including oligodendrocyte lineage cells. The precise downstream targets of these signaling pathways, however, remain to be defined. We studied oligodendroglial cells to determine whether ,-catenin, a molecule that is a downstream target of glycogen synthase kinase-3, (GSK3,) and plays a key role in the Wnt canonical signaling pathway, mediates IGF-I actions. We found that IGF-I increases ,-catenin protein abundance within an hour after IGF-I-induced phosphorylation of Akt and GSK3,. Inhibiting the PI3-Akt pathway suppressed IGF-I-induced increases in ,-catenin and cyclin D1 mRNA, while suppression of GSK3, activity simulated IGF-I actions. Knocking-down ,-catenin mRNA by RNA interference suppressed IGF-I-stimulated increases in the abundance of cyclin D1 mRNA, cell proliferation, and cell survival. Our data suggest that ,-catenin is an important downstream molecule in the PI3-Akt-GSK3, pathway, and as such it mediates IGF-I upregulation of cyclin D1 mRNA and promotion of cell proliferation and survival in oligodendroglial cells. © 2010 Wiley-Liss, Inc. [source] Insulin-Like Growth Factor I Production Is Essential for Anabolic Effects of Thyroid Hormone in Osteoblasts,JOURNAL OF BONE AND MINERAL RESEARCH, Issue 2 2000Bill K. Huang Abstract Thyroid hormone (T3) and insulin-like growth factor I (IGF-I) are critical regulators of skeletal function. T3 increases IGF-I production in bone. To assess the potential role of IGF-I as a mediator of T3 actions, we characterized phenotypic markers of osteoblast activity in two osteoblast models, normal mouse osteoblasts and MC3T3-E1 cells, exposed to T3 alone or under conditions that interfere with IGF-I actions. T3 significantly increased osteoblast 3H-proline incorporation, alkaline phosphatase (ALP), and osteocalcin. Both ,IR3, a neutralizing monoclonal antibody to the IGF-I receptor, and JB1, an IGF-I analogue antagonist, attenuated the stimulatory effects of T3. T3 effects also were decreased in cells transfected with antisense oligonucleotide (AS-ODN) to the IGF-I receptor gene. Both IGF-I and T3 had mitogenic effects that were inhibited by the antagonists. IGF-I by itself did not stimulate 3H-proline incorporation, ALP, and osteocalcin in the models used, revealing that although IGF-I is essential for the anabolic effects of T3, it acts in concert with other factors to elicit these phenotypic responses. (J Bone Miner Res 2000;15:188,197) [source] |