Home About us Contact | |||
IGF-I
Kinds of IGF-I Terms modified by IGF-I Selected AbstractsInsulin-like growth factors, hepatocyte growth factor and transforming growth factor-, in mouse tongue myogenesisDEVELOPMENT GROWTH & DIFFERENTIATION, Issue 1 2003Akira Yamane Many reports have shown that tongue striated muscles have several unique characteristics not found in other skeletal muscles such as limb and trunk. Several peptide growth factors are reported to play important roles in skeletal myogenesis. In this article, the roles of insulin-like growth factors (IGF), hepatocyte growth factor (HGF) and transforming growth factor (TGF)-, in mouse tongue myogenesis were studied using an organ culture system of the mandible or tongue obtained from mouse embryos. It was found that IGF-I promotes the differentiation of tongue myoblasts. HGF plays an essential role in the migration and proliferation of tongue myogenic cells, and inhibits the differentiation of tongue myoblasts. TGF-, does not play an essential role in the proliferation of tongue myogenic cells, but does promote the early differentiation of tongue myoblasts. The role of IGF-I in the differentiation of tongue myoblasts, and that of HGF in the migration, proliferation and differentiation of tongue myogenic cells appear to be almost identical to their roles in the myogenesis of limb and cultured myogenic cell lines. However, the role of TGF-, in the proliferation and differentiation of tongue myogenic cells appears to be different from its role in the myogenesis of limb and cultured myogenic cell lines such as C2 and L6. [source] Pubertal maturation modifies the regulation of insulin-like growth factor-I receptor signaling by estradiol in the rat prefrontal cortexDEVELOPMENTAL NEUROBIOLOGY, Issue 8 2008Amaya Sanz Abstract The transition from adolescence to adulthood is accompanied by substantial plastic modifications in the cerebral cortex, including changes in the growth and retraction of neuronal processes and in the rate of synaptic formation and neuronal loss. Some of these plastic changes are prevented in female rats by prepubertal ovariectomy. The ovarian hormone estradiol modulates neuronal differentiation and survival and these effects are in part mediated by the interaction with insulin-like growth factor-I (IGF-I). In this study, we have explored whether the activation by estradiol of some components of IGF-I receptor signaling is altered in the prefrontal cortex during puberty. Estradiol administration to rats ovariectomized after puberty resulted, 24 h after the hormonal administration, in a sustained phosphorylation of Akt and glycogen synthase kinase 3, in the prefrontal cortex. However, this hormonal effect was not observed in animals ovariectomized before puberty. These findings suggest that during pubertal maturation there is a programming by ovarian hormones of the future regulatory actions of estradiol on IGF-I receptor signaling in the prefrontal cortex. The modification in the regulation of IGF-I receptor signaling by estradiol during pubertal maturation may have implications for the developmental changes occurring in the prefrontal cortex in the transition from adolescence to adulthood. © 2008 Wiley Periodicals, Inc. Develop Neurobiol, 2008. [source] Phosphatidylinositol-3-OH kinase regulatory subunits are differentially expressed during development of the rat cerebellumDEVELOPMENTAL NEUROBIOLOGY, Issue 1 2001José L. Trejo Abstract Recent evidence implicates a central role for PI3K signalling in mediating cell survival during the process of neuronal differentiation. Although PI3K activity is stimulated by a wide range of growth factors and cytokines in different cell lines and tissues, activation of this pathway by insulin-like growth factor I (IGF-I) most likely represents the main survival signal during neuronal differentiation. IGF-I is highly expressed during development of the central nervous system, and thus is a critical factor for the development and maturation of the cerebellum. Upon ligand binding, the IGF-I receptor phosphorylates tyrosine residues in SHC and insulin receptor substrates (IRSs) initiating two main signalling cascades, the MAP kinase and the phosphatidylinositol 3-kinase (PI3K) pathways. Activated PI3K is composed of a catalytic subunit (p110, or ,) associated with one of a large family of regulatory subunits (p85,, p85,, p55,, p55,, and p50,). To evaluate the contributions of these various regulatory subunits to neuronal differentiation, we have used antibodies specific for each of the PI3K subunits. Using these antisera, we now demonstrate that PI3K subunits are differentially regulated in cerebellar development, and that the expression level of the p55, regulatory subunit reaches a maximum during postnatal development, decreasing thereafter to low levels in the adult cerebellum. Furthermore, our studies reveal that the distribution of the various PI3K regulatory subunits varies during development of the cerebellum. Interestingly, p55, is expressed in both glial and neuronal cells; moreover, in Purkinje neurones, this subunit colocalises with the IGF-IR. © 2001 John Wiley & Sons, Inc. J Neurobiol 47: 39,50, 2001 [source] The role of IGF-I and its binding proteins in the development of type 2 diabetes and cardiovascular diseaseDIABETES OBESITY & METABOLISM, Issue 3 2008Vivienne A. Ezzat Patients with insulin resistance and type 2 diabetes have an excessive risk of cardiovascular disease (CVD); this increased risk is not fully explained by traditional risk factors such as hypertension and dyslipidaemias. There is now compelling evidence to suggest that abnormalities of insulin-like growth factor-I (IGF-I) and one of its binding proteins, insulin-like growth factor-binding protein-1 (IGFBP-1), occur in insulin-resistant states and may be significant factors in the pathophysiology of CVD. We reviewed articles and relevant bibliographies following a systematic search of MEDLINE for English language articles between 1966 and the present, using an initial search strategy combining the MeSH terms: IGF, diabetes and CVD. Our aim was first to review the role of IGF-I in vascular homeostasis and to explore the mechanisms by which it may exert its effects. We also present an overview of the physiology of the IGF-binding proteins, and finally, we sought to summarize the evidence to date describing the changes in the insulin/IGF-I/IGFBP-1 axis that occur in type 2 diabetes and CVD; in particular, we have focused on the potential vasculoprotective effects of both IGF-I and IGFBP-1. We conclude that this system represents an interesting and novel therapeutic target in the prevention of CVD in type 2 diabetes. [source] Therapeutic aspects of growth hormone and insulin-like growth factor-I treatment on visceral fat and insulin sensitivity in adultsDIABETES OBESITY & METABOLISM, Issue 1 2007K. C. J. Yuen Growth hormone (GH) is generally considered to exert anti-insulin actions, whereas insulin-like growth factor I (IGF-I) has insulin-like properties. Paradoxically, GH deficient adults and those with acromegaly are both predisposed to insulin resistance, but one cannot extrapolate from these pathological conditions to determine the normal metabolic roles of GH and IGF-I on glucose homeostasis. High doses of GH treatment have major effects on lipolysis, which plays a crucial role in promoting its anti-insulin effects, whereas IGF-I acts as an insulin sensitizer that does not exert any direct effect on lipolysis or lipogenesis. Under physiological conditions, the insulin-sensitizing effect of IGF-I is only evident after feeding when the bioavailability of circulating IGF-I is increased. In contrast, many studies in GH deficient adults have consistently shown that GH replacement improves the body composition profile although these studies differ considerably in terms of age, the presence or absence of multiple pituitary hormone deficiency, and whether GH deficiency was childhood or adult-onset. However, the improvement in body composition does not necessarily translate into improvements in insulin sensitivity presumably due to the anti-insulin effects of high doses of GH therapy. More recently, we have found that a very low dose GH therapy (0.1 mg/day) improved insulin sensitivity without affecting body composition in GH-deficient adults and in subjects with metabolic syndrome, and we postulate that these effects are mediated by its ability to increase free ,bioavailable' IGF-I without the induction of lipolysis. These results raise the possibility that this low GH dose may play a role in preventing the decline of ,-cell function and the development of type 2 diabetes in these "high risk" subjects. [source] The role of insulin-like growth factor-I and its binding proteins in glucose homeostasis and type 2 diabetesDIABETES/METABOLISM: RESEARCH AND REVIEWS, Issue 1 2009Swapnil N. Rajpathak Abstract This review addresses the possible role of the insulin-like growth factor (IGF)-axis in normal glucose homoeostasis and in the etiopathogenesis of type 2 diabetes. IGF-I, a peptide hormone, shares amino acid sequence homology with insulin and has insulin-like activity; most notably, the promotion of glucose uptake by peripheral tissues. Type 2 diabetes as well as pre-diabetic states, including impaired fasting glucose and impaired glucose tolerance, are associated cross-sectionally with altered circulating levels of IGF-I and its binding proteins (IGFBPs). Administration of recombinant human IGF-I has been reported to improve insulin sensitivity in healthy individuals as well as in patients with insulin resistance and type 2 diabetes. Further, IGF-I may have beneficial effects on systemic inflammation, a risk factor for type 2 diabetes, and on pancreatic ,-cell mass and function. There is considerable inter-individual heterogeneity in endogenous levels of IGF-I and its binding proteins; however, the relationship between these variations and the risk of developing type 2 diabetes has not been extensively investigated. Large prospective studies are required to evaluate this association. Copyright © 2009 John Wiley & Sons, Ltd. [source] Lower levels of circulating IGF-I in Type 1 diabetic women with frequent severe hypoglycaemia during pregnancyDIABETIC MEDICINE, Issue 7 2008L. Ringholm Nielsen Abstract Aims Severe hypoglycaemia is a significant problem in pregnant women with Type 1 diabetes. We explored whether frequent severe hypoglycaemia during pregnancy in women with Type 1 diabetes is related to placental growth hormone (GH) and insulin-like growth factor I (IGF-I) levels. Methods A prospective, observational study of 107 consecutive pregnant women with Type 1 diabetes. Blood samples were drawn for IGF-I and placental GH analyses at 8, 14, 21, 27 and 33 weeks. Severe hypoglycaemic events were reported within 24 h. Results Eleven women (10%) experienced frequent severe hypoglycaemia (, 5 events), accounting for 60% of all events. Throughout pregnancy, IGF-I levels were 25% lower in these women (P < 0.005) compared with the remaining women, despite similar placental GH levels. Eighty per cent of the severe hypoglycaemic events occurred before 20 weeks when IGF-I levels were at their lowest. This finding was not explained by differences in insulin dose, median plasma glucose levels or glycated haemoglobin. History of severe hypoglycaemia the year preceding pregnancy and impaired hypoglycaemia awareness,being the only predictors of frequent severe hypoglycaemia in a logistic regression analysis,were not associated with IGF-I or placental GH levels at 8 weeks. Conclusions In women with Type 1 diabetes experiencing frequent severe hypoglycaemia during pregnancy, IGF-I levels are significantly lower compared with the remaining women despite similar placental GH levels. IGF-I levels are lowest in early pregnancy where the incidence of severe hypoglycaemia is highest. IGF-I may be a novel factor of interest in the investigation of severe hypoglycaemia in patients with Type 1 diabetes. [source] Evidence for distinct effects of GH and IGF-I in the metabolic syndromeDIABETIC MEDICINE, Issue 9 2007P. Maison Abstract Aims, The metabolic syndrome is a cluster of cardiovascular risk factors which include central obesity, dyslipidaemia, glucose intolerance and hypertension. These risk factors are common in patients with growth hormone (GH) deficiency, suggesting a role for the somatotropic axis in the development of metabolic syndrome. Methods, We used factor analysis to investigate the relationships linking serum levels of GH and insulin-like growth factor I (IGF-I) to metabolic syndrome variables (high-density lipoprotein cholesterol, triglycerides, fasting glucose, blood pressure and waist circumference). We studied 359 men and 388 women from the Data from an Epidemiological Study on the Insulin Resistance syndrome (DESIR). Their age range was 30,64 years. Results, Three independent latent factors explained 61% of the total variance in women and four factors explained 73% in men. In both men and women, IGF-I showed a strong positive correlation with the lipid factor and a negative correlation with the obesity/glucose factor. In women, GH showed a strong negative correlation with the obesity/glucose factor but not the lipid factor. In men, GH was unrelated to the lipid and obesity/glucose factors. The blood pressure factor was not related to GH or IGF-I. In contrast with IGF-I, GH was significantly lower in women with metabolic syndrome (1575 ± 449 pg/ml) than in the other women (2121 ± 520 pg/ml, P = 0.002). No significant difference was observed in men for GH or IGF-I. Conclusion, Our results support a link between the somatotropic axis and several features of the metabolic syndrome, and suggest distinct effects of GH and IGF-I on these parameters. [source] Impact of microcystin containing diets on physiological performance of Nile tilapia (Oreochromis niloticus) concerning stress and growth,ENVIRONMENTAL TOXICOLOGY & CHEMISTRY, Issue 3 2010Andrea Ziková Abstract Diets containing Microcystis with considerable amounts of the cyanotoxin microcystin-LR (MC-LR) were fed to determine their impact on the physiological performance of the omnivorous Nile tilapia (Oreochromis niloticus) with regard to stress and growth performance. Four different diets were prepared based on a commercial diet (control, MC-5% [containing 5% dried Microcystis biomass], MC-20% [containing 20% dried Microcystis biomass], and Arthrospira-20% [containing 20% dried Arthrospira sp. biomass without toxin]) and fed to female Nile tilapia. Blood and tissue samples were taken after 1, 7, and 28 d, and MC-LR was quantified in gills, muscle, and liver by using high-performance liquid chromatography (HPLC). Only in the liver were moderate concentrations of MC-LR detected. The stress hormone cortisol and glucose were analyzed from plasma, suggesting that all modified diets caused only minor to moderate stress, which was confirmed by analyses of hepatic glycogen. In addition, the effects of the different diets on growth performance were investigated by determining gene expression of hypophyseal growth hormone (GH) and hepatic insulin-like growth factor-I (IGF-I). For all diets, quantitative reverse transcription-polymerase chain reaction (RT-qPCR) demonstrated no significant effect on gene expression of the major endocrine hormones of the growth axis, whereas classical growth data, including growth and feed conversion ratio, displayed slight inhibitory effects of all modified diets independent of their MC-LR content. However, no significant change was found in condition or hepatosomatic index among the various diets, so it seems feasible that dried cyanobacterial biomass might be even used as a component in fish diet for Nile tilapia, which requires further research in more detail. Environ. Toxicol. Chem. 2010;29:561,568. © 2009 SETAC [source] Insulin-like growth factors and pancreas beta cellsEUROPEAN JOURNAL OF CLINICAL INVESTIGATION, Issue 4 2004T. W. Van Haeften Abstract Insulin-like growth factors (IGFs) have been implicated in normal growth, and especially foetal pancreas beta-cell development. As low birth weight has been implicated in the development of obesity and type 2 diabetes, much research has evolved into the importance of IGF and their signalling pathways for pancreas beta-cell development, and for type 2 diabetes. Insulin-like growth factor-I signalling has a lot in common with insulin signalling, and is involved in diverse cellular effects such as antiapoptosis, protein synthesis, cell growth and mitogenesis. Insulin-like growth factor-II can be bound by the insulin receptor A subtype and the IGF-1 receptor, which may explain its antiapoptotic effect. Various knock-out model studies indicate that absence of IGF-I or the IGF-1 receptor is critical for foetal and postnatal growth. Similarly, knock-out models of post-receptor molecules (such as IRS-2) point to the physiological role of IGFs for pancreas beta-cell development. A beta-cell-specific IGF-1 receptor knock out model indicates the importance of IGF-I for beta-cell function. The Goto-Kakizaki (GK) rat, a model for diabetes, has insufficient beta-cell development, which may be related to its defective IGF-II synthesis. As normal pancreas beta cells adapt to the prevailing insulin resistance with increasing beta-cell function, it is possible that insulin resistance interacts with IGF signalling in pancreas beta cells. [source] Chronic cognitive sequelae after traumatic brain injury are not related to growth hormone deficiency in adultsEUROPEAN JOURNAL OF NEUROLOGY, Issue 5 2010D. Pavlovic Objective:, The objective of the study was to asses the possible influence of hypothalamo,pituitary deficiencies, and growth hormone (GH) deficiency in particular, on cognition in adult patients with traumatic brain injury (TBI). TBI is a recently identified risk factor for cognitive deficits and hypopituitarism. Even the patients with favorable outcome after TBI may present with persistent bodily, psychosocial, and cognitive impairments, resembling patients with untreated partial or complete pituitary insufficiency. Design:, We performed retrospective and cross-sectional study of endocrine and cognitive function in TBI in 61 patients (aged 37.7 ± 1.7 years) of both sexes (44 m,17 f), at least 1 year after TBI (3.9 ± 0.6 years). Serum insulin-like growth factor 1 (IGF-I), thyroxin, thyroid-stimulating hormone (TSH), follicle-stimulating hormone (FSH), luteinizing hormone (LH), testosterone (in men), prolactin, and cortisol were measured, and GH secretion was assessed by growth hormone releasing hormone (GHRH) + growth hormone releasing peptide-6 (GHRP-6) test. Cognitive function was assessed by using a standard neuropsychological battery. Results:, GH deficiency (GHD) and GH insufficiency (GHI) were found in 20 patients (32.8%). After adjustment for confounders [age, body mass index (BMI), education level, time elapsed from TBI], there were no significant differences in results of neuropsychological tests between patients with TBI with GHD, GHI, and normal GH secretion. There were no correlations of neuropsychological variables with stimulated peak GH secretion or IGF-I level. Conclusions:, GHD persists long after the TBI, independently of trauma severity and age at traumatic event. GH secretion is more sensitive to TBI than other pituitary hormones. No evidence is found for an association of cognitive function impairment and somatotropic axis impairment in adult patients tested more than 1 year after the TBI. [source] Mechanism of insulin-like growth factor I-mediated proliferation of adult neural progenitor cells: role of AktEUROPEAN JOURNAL OF NEUROSCIENCE, Issue 4 2007Haviryaji S. G. Kalluri Abstract Insulin-like growth factor I (IGF-I) is involved in the proliferation and differentiation of adult neural progenitor cells; however, the underlying mechanism is not clear. We analysed the involvement of the phosphatidylinositol 3-kinase/Akt and MEK/extracellular signal-regulated kinase (ERK) pathways in the IGF-I-mediated proliferation of rat neural progenitor cells. Stimulation of neural progenitor cells with IGF-I enhanced the phosphorylation of Akt but not ERK. Cell proliferation assay demonstrated that 2-(4-morpholinyl)-8-phenyl-4H-1-benzopyran-4-one (phosphoinositide 3-kinase inhibitor) but not 1,4-diamino-2,3-dicyano-1,4-bis(2-aminophenylthio)-butadiene (U0126) (ERK inhibitor) inhibited the IGF-I-induced survival of cells, whereas fibroblast growth factor 2 (FGF-2) enhanced the IGF-I-mediated survival of cells. Consistent with the cell proliferation assay, 5,bromo-2-deoxy-uridine incorporation studies established a negative role for IGF-I in proliferation. However, FGF-2 (ERK activator) in the presence of IGF-I (Akt activator) increased the proliferation of cells. Accordingly, stimulation of the ERK pathway by FGF-2 induced the expression of cyclin D1, which is essential for the entry of cells into cell cycle, and IGF-I in the presence of FGF-2 up-regulated the expression of cyclin D1. IGF-I in the absence or presence of FGF-2 increased the phosphorylation of glycogen synthase kinase, thus supporting its role in the survival of neural progenitor cells. To further confirm the role of ERK activation in the proliferation, we cultured cells in FGF-2 + IGF-I-containing medium in the presence and absence of U0126 (ERK inhibitor), and showed the inhibition of nestin expression in U0126-treated cells. The decrease in the cyclin D1 content in conjunction with the inhibition of nestin expression by ERK inhibitor confirms the role of ERK in the proliferation of cells. [source] Reduced growth hormone receptor immunoreactivity in osteoclasts adjacent to the erupting molar in the incisor-absent (osteopetrotic) ratEUROPEAN JOURNAL OF ORAL SCIENCES, Issue 6 2003Anne L. Symons First molars fail to erupt in the incisor-absent (ia/ia) rat because of a defect in osteoclast function. Growth factors that regulate local bone metabolism include growth hormone (GH), insulin-like growth factor-I (IGF-I), epidermal growth factor (EGF) and interleukin-1 alpha (IL- 1,). Since osteoclast function may be affected by these factors, the aim of this study was to determine the distribution of GH receptor (GHr), IGF-I, EGF and IL-1,, in osteoclasts located occlusal to the erupting first molar, in the ,eruption pathway', in normal and ia/ia rats. Sagittal sections of the first molar and adjacent bone from 3- and 9-d-old animals were examined. Osteoclasts were identified using tartrate-resistant acid phosphatase (TRAP). The TRAP-positive osteoclast cell numbers were higher in ia/ia animals at 3 and 9 days-of-age. In the ia/ia group, fewer osteoclasts were GHr- and IGF-I-positive at 3 d of age, and at 9 d of age fewer osteoclasts were GHr-positive. In the ia/ia rat, defective osteoclast function failed to resorb bone to provide an eruption pathway for the lower first molar. The expression of GHr, and to some degree IGF-I, by these osteoclasts was reduced, which may be related to their ability to differentiate and function. [source] Role of the IGF-II receptor in mediating acute, non-genomic effects of retinoids and IGF-II on keratinocyte cell deathEXPERIMENTAL DERMATOLOGY, Issue 4 2003F. Louafi Abstract:, In this study, we have examined the effects of retinoic acid (RA) on the human immortalized keratinocyte cell line (HaCaT). A significant twofold (P < 0.01) increase in apoptotic cell death compared with the control was found within 24 h of treatment with 10,5 M of RA. Apoptosis was confirmed by flow cytometry. Cycloheximide did not inhibit this acute RA-induced apoptosis. Interestingly, insulin-like growth factor-II (IGF-II, 50 ng/ml) was able to significantly (67.3%; P < 0.05) reduce RA effects, whereas IGF-I (50 ng/ml) and insulin (75 ng/ml) were without effect. Furthermore, analogues of IGF-II [leu27 IGF-II and Des(1-6) IGF-II], with altered affinities for the IGF-I receptor and IGF-binding proteins (IGFBPs), but retained affinities for the IGF-II receptor, also completely inhibited (100%; P < 0.01) RA-induced apoptosis, while an IGF-I receptor antagonist did not reduce the survival effects of IGF-II. Insulin pretreatment negates the survival effect of IGF-II. In contrast, mannose 6 phosphate (M6P) did not alter RA or IGF-II actions. These results indicate that rapid induction of cell death by RA is independent of production or secretion of new proteins. The inhibition of RA action by IGF-II was independent of its ability to signal through the IGF-I receptor or to interact with IGFBPs. [source] Plasticity of human skeletal muscle: gene expression to in vivo functionEXPERIMENTAL PHYSIOLOGY, Issue 5 2007Stephen D. R. Harridge Human skeletal muscle is a highly heterogeneous tissue, able to adapt to the different challenges that may be placed upon it. When overloaded, a muscle adapts by increasing its size and strength through satellite-cell-mediated mechanisms, whereby protein synthesis is increased and new nuclei are added to maintain the myonuclear domain. This process is regulated by an array of mechanical, hormonal and nutritional signals. Growth factors, such as insulin-like growth factor I (IGF-I) and testosterone, are potent anabolic agents, whilst myostatin acts as a negative regulator of muscle mass. Insulin-like growth factor I is unique in being able to stimulate both the proliferation and the differentiation of satellite cells and works as part of an important local repair and adaptive mechanism. Speed of movement, as characterized by maximal velocity of shortening (Vmax), is regulated primarily by the isoform of myosin heavy chain (MHC) contained within a muscle fibre. Human fibres can express three MHCs: MHC-I, -IIa and -IIx, in order of increasing Vmax and maximal power output. Training studies suggest that there is a subtle interplay between the MHC-IIa and -IIx isoforms, with the latter being downregulated by activity and upregulated by inactivity. However, switching between the two main isoforms appears to require significant challenges to a muscle. Upregulation of fast gene programs is caused by prolonged disuse, whilst upregulation of slow gene programs appears to require significant and prolonged activity. The potential mechanisms by which alterations in muscle composition are mediated are discussed. The implications in terms of contractile function of altering muscle phenotype are discussed from the single fibre to the whole muscle level. [source] Adult-onset deficiency in growth hormone and insulin-like growth factor-I alters oligodendrocyte turnover in the corpus callosumGLIA, Issue 10 2009Kun Hua Abstract Growth hormone (GH) and insulin-like growth factor-I (IGF-I) provide trophic support during development and also appear to influence cell structure, function and replacement in the adult brain. Recent studies demonstrated effects of the GH/IGF-I axis on adult neurogenesis, but it is unclear whether the GH/IGF-I axis influences glial turnover in the normal adult brain. In the current study, we used a selective model of adult-onset GH and IGF-I deficiency to evaluate the role of GH and IGF-I in regulating glial proliferation and survival in the adult corpus callosum. GH/IGF-I-deficient dwarf rats of the Lewis strain were made GH/IGF-I replete via twice daily injections of GH starting at postnatal day 28 (P28), approximately the age at which GH pulse amplitude increases in developing rodents. GH/IGF-I deficiency was initiated in adulthood by removing animals from GH treatment. Quantitative analyses revealed that adult-onset GH/IGF-I deficiency decreased cell proliferation in the white matter and decreased the survival of newborn oligodendrocytes. These findings are consistent with the hypothesis that aging-related changes in the GH/IGF-I axis produce deficits in ongoing turnover of oligodendrocytes, which may contribute to aging-related cognitive changes and deficits in remyelination after injury. © 2008 Wiley-Liss, Inc. [source] Synergistic induction of cyclin D1 in oligodendrocyte progenitor cells by IGF-I and FGF-2 requires differential stimulation of multiple signaling pathwaysGLIA, Issue 10 2007Terra J. Frederick Abstract D-type cyclins are direct targets of extracellular signals and critical regulators of G1 progression. Our previous data demonstrated that IGF-I and FGF-2 synergize to enhance cyclin D1 expression, cyclin E/cdk2 complex activation, and S-phase entry in OP cells. Here, we provide a mechanistic explanation for how two growth factor signaling pathways converge on a major cell cycle regulator. IGF-I and FGF-2 differentially activate signaling pathways to coordinately promote cyclin D1 expression. We show that the p44/p42 MAPK signaling pathway is essential for FGF-2 induction of cyclin D1 mRNA. In contrast, blocking the PI3-Kinase pathway results in loss of IGF-I/FGF-2 synergistic induction of cyclin D1 protein levels. Moreover, the presence of IGF-I significantly enhances nuclear localization of cyclin D1, which also requires PI3K signaling. GSK-3,, a downstream target of the PI3K/Akt pathway, is phosphorylated in the presence of IGF-I in OPs. Consistent with a known role for GSK-3, in cyclin D1 degradation, we show that proteasome inhibition in OPs exposed to FGF-2 increased cyclin D1 levels, equivalent to levels seen in IGF-I/FGF-2 treated cells. Thus, we provide a model for cyclin D1 coordinate regulation where FGF-2 stimulation of the MAPK pathway promotes cyclin D1 mRNA expression while IGF-I activation of the PI3K pathway inhibits proteasome degradation of cyclin D1 and enhances nuclear localization of cyclin D1. © 2007 Wiley-Liss, Inc. [source] Synergistic premalignant effects of chronic ethanol exposure and insulin receptor substrate-1 overexpression in liverHEPATOLOGY RESEARCH, Issue 9 2008Lisa Longato Aim:, Insulin receptor substrate, type 1 (IRS-1) transmits growth and survival signals, and is overexpressed in more than 90% of hepatocellular carcinomas (HCCs). However, experimental overexpression of IRS-1 in the liver was found not to be sufficient to cause HCC. Since chronic alcohol abuse is a risk factor for HCC, we evaluated potential interactions between IRS-1 overexpression and chronic ethanol exposure by assessing premalignant alterations in gene expression. Methods:, Wild-type (wt) or IRS-1 transgenic (Tg) mice, constitutively overexpressing the human (h) transgene in the liver, were pair-fed isocaloric liquid diets containing 0% or 24% ethanol for 8 weeks. The livers were used for histopathologic study and gene expression analysis, focusing on insulin, insulin-like growth factor (IGF) and wingless (WNT),Frizzled (FZD) pathways, given their known roles in HCC. Results:, In wt mice, chronic ethanol exposure caused hepatocellular microsteatosis with focal chronic inflammation, reduced expression of proliferating cell nuclear antigen (PCNA) and increased expression of IGF-I and IGF-I receptor. In hIRS-1 Tg mice, chronic ethanol exposure caused hepatic micro- and macrosteatosis, focal chronic inflammation, apoptosis and disordered lobular architecture. These effects of ethanol in hIRS-1 Tg mice were associated with significantly increased expression of IGF-II, insulin, IRS-4, aspartyl,asparaginyl , hydroxylase (AAH), WNT-1 and FZD 7, as occurs in HCC. Conclusion:, In otherwise normal liver, chronic ethanol exposure mainly causes liver injury and inflammation with impaired DNA synthesis. In contrast, in the context of hIRS-1 overexpression, chronic ethanol exposure may serve as a cofactor in the pathogenesis of HCC by promoting expression of growth factors, receptors and signaling molecules known to be associated with hepatocellular transformation. [source] Endogenous sex hormones, prolactin and mammographic density in postmenopausal Norwegian womenINTERNATIONAL JOURNAL OF CANCER, Issue 11 2007Yngve Bremnes Abstract The associations between endogenous sex hormone levels and breast cancer risk in postmenopausal women are well established. Mammographic density is a strong risk factor for breast cancer, and possibly an intermediate marker. However, the results from studies on the associations between endogenous sex hormones and mammographic density are conflicting. The authors examined the associations between circulating levels of sex hormones, sex hormone binding globulin (SHBG) and prolactin and mammographic densities among postmenopausal women not currently using postmenopausal hormone therapy (HT). The authors also examined if insulin-like growth factor-I (IGF-I) levels influenced the association between estrogen and mammographic density. Altogether, 722 postmenopausal participants in the Norwegian governmental mammographic screening program had endogenous hormone concentrations measured. Mammograms were classified according to percent and absolute mammographic density using a previously validated computer-assisted method. After adjustment for age, number of children, age at menopause, body mass index and HT use, both plasma concentrations of SHBG (p -trend = 0.003) and estrone (p -trend = 0.07) were positively associated with percent mammographic density. When the analyses were stratified according to median IGF-I concentration, the weak association between estrone and mammographic density was strengthened among women with IGF-I levels below median, while the association disappeared among women with over median IGF-I levels (p for interaction = 0.02). In summary, the authors found a positive association between plasma SHBG levels and mammographic densities among 722 postmenopausal Norwegian women not currently using HT. Further, the authors found a positive but weak association between plasma estrone concentration and mammographic density, which appeared to be modified by IGF-I levels. © 2007 Wiley-Liss, Inc. [source] A recombinant humanized anti-insulin-like growth factor receptor type I antibody (h7C10) enhances the antitumor activity of vinorelbine and anti-epidermal growth factor receptor therapy against human cancer xenograftsINTERNATIONAL JOURNAL OF CANCER, Issue 2 2005Liliane Goetsch Abstract Interaction of insulin-like growth factor receptor I (IGF-IR) with its ligands has been reported to induce cell proliferation, transformation and blockade of cell apoptotic functions. IGF-IR is overexpressed on numerous tumor cell types and its blockade could be of importance for anti-cancer therapy. We have generated a humanized anti-IGF-IR antibody h7C10 that blocks in vitro IGF-I and IGF-II-induced cell proliferation of MCF-7 breast cancer cells. Analysis of the IGF-I transduction cascade demonstrated that the humanized anti-IGF-IR antibody and its murine parental form block IGF-I-induced tyrosine phosphorylation, both its ,-chain and IRS-1 tyrosine phosphorylation. This presumably leads to cell cycle arrest and, consequently, growth inhibition. Treatment of nude mice bearing either human breast cancer cells (MCF-7) or non small lung cancer cells (A549) with h7C10, or its murine parental form 7C10, inhibited significantly tumor growth. An almost complete inhibition of A549 tumor growth was observed when mice were treated with the anti-IGF-IR antibody combined with either a chemotherapeutic agent, Vinorelbine or an anti-epidermal growth factor receptor (EGFR) antibody, 225. Combined therapy prolonged significantly the life span of mice in an orthotopic in vivo model of A549; the combination of the anti-IGF-IR antibody with an anti-EGFR antibody was superior to the Vinorelbine combination. The present results indicate that the humanized anti-IGF-IR antibody h7C10 has a great potential for cancer therapy when combined with either a chemotherapeutic agent or an antibody that targets other growth factor receptors, such as the epidermal growth factor receptor. [source] Long term consequences of the 1944,1945 Dutch famine on the insulin-like growth factor axisINTERNATIONAL JOURNAL OF CANCER, Issue 4 2004Sjoerd G. Elias Abstract The insulin-like growth factor axis is highly responsive to nutritional status and may be involved as one of the underlying mechanisms through which caloric restriction could affect cancer risk. High levels of circulating insulin-like growth factor (IGF)-I, or IGF-I relative to IGF binding protein (IGFBP)-3 have been related to various human cancer types. In a group of 87 postmenopausal women, we found that childhood exposure to the 1944,1945 Dutch famine was associated with increased plasma levels of IGF-I and IGFBP-3, whereas IGFBP-1 and -2 levels were weakly decreased. These results are opposite to immediate responses seen under starvation and we hypothesize that this could indicate a permanent overshoot upon improvement of nutritional status after the famine. © 2003 Wiley-Liss, Inc. [source] Prediagnostic levels of C-peptide, IGF-I, IGFBP -1, -2 and -3 and risk of endometrial cancer,INTERNATIONAL JOURNAL OF CANCER, Issue 2 2004Annekatrin Lukanova Abstract Conditions related to chronic hyperinsulinemia, such as obesity, noninsulin dependent diabetes mellitus and polycystic ovary syndrome, are associated with an increased risk of endometrial cancer. Elevated plasma IGF-I and decreased levels of IGF-binding proteins have been shown to be associated with increased risk of several cancer types that are frequent in affluent societies. We investigated for the first time in a prospective study the association of pre-diagnostic blood concentrations of C-peptide (a marker of pancreatic insulin production), IGF-I, IGFBP-1, -2 and -3 with endometrial cancer risk. A case-control study was nested within 3 cohorts in New York (USA), Umeå (Sweden) and Milan (Italy). It included 166 women with primary invasive endometrial cancer and 315 matched controls, of which 44 case and 78 control subjects were premenopausal at recruitment. Endometrial cancer risk increased with increasing levels of C-peptide (ptrend = 0.0002), up to an odds ratio (OR) of 4.76 [95% confidence interval (CI) = 1.91,11.8] for the highest quintile. This association remained after adjustment for BMI and other confounders [OR for the top quintile = 4.40 (1.65,11.7)]. IGFBP-1 levels were inversely related to endometrial cancer [ptrend = 0.002; OR in the upper quintile = 0.30 (0.15,0.62)], but the association was weakened and lost statistical significance after adjustment for confounders [ptrend = 0.06; OR in the upper quintile = 0.49 (0.22,1.07)]. Risk was unrelated to levels of IGF-I, IGFBP-2 and IGFBP-3. Chronic hyperinsulinemia, as reflected by increased circulating C-peptide, is associated with increased endometrial cancer risk. Decrease in the prevalence of chronic hyperinsulinemia, through changes in lifestyle or medication, is expected to prevent endometrial cancer. © 2003 Wiley-Liss, Inc. [source] Genetic Approaches to the Study of AgingJOURNAL OF AMERICAN GERIATRICS SOCIETY, Issue 9s 2005Richard A. Miller MD Can mouse genetics teach us enough about the biology of aging to guide the search for anti-aging medicines that can delay late-life illness? Recent progress gives reason for optimism, with new data showing that changes in single genes can extend average and maximal life span by 40%. Mice with these genetic variants remain healthy, active, and cognitively intact at average ages that correspond to 110,120 years of human life span. Multiple lines of evidence now point to a hormone, IGF-I, as a key influence on life span, with low IGF-I levels associated with extended longevity in multiple model systems. The goal of this research is not gene therapy,we have no idea of what genes to change, how to change them, or what harm such changes might do,but instead to use insights from the cell biology and endocrinology of genetically long-lived mice and other species to help develop drugs that manipulate aging and thus postpone the many diseases and disabilities that are typically troublesome in old age. The complete conquest of cancer or heart disease would each lead to an increase of a mere,3% in mean life span in humans, i.e. about a tenth of what can be accomplished, today, in laboratory animals of delayed aging. In this context the paltry commitment to research in biological gerontology (six cents per $100 of NIH funding, for example) seems worth reconsideration. [source] Growth Hormone Administration and Exercise Effects on Muscle Fiber Type and Diameter in Moderately Frail Older PeopleJOURNAL OF AMERICAN GERIATRICS SOCIETY, Issue 7 2001James V. Hennessey MD OBJECTIVE: Reduced muscle mass and strength are characteristic findings of growth hormone deficiency (GHD) and aging. We evaluated measures of muscle strength, muscle fiber type, and cross sectional area in response to treatment with recombinant human growth hormone (rhGH) with or without a structured resistance exercise program in frail older subjects. DESIGN: Placebo-controlled, randomized, double blind trial. SETTING: Outpatient clinical research center at an urban university-affiliated teaching hospital. PARTICIPANTS: Thirty-one consenting older subjects (mean age 71.3 ± 4.5 years) recruited as a subset of a larger project evaluating rhGH and exercise in older people, who underwent 62 quadricep-muscle biopsies. INTERVENTION: Random assignment to a 6-month course of one of four protocols: rhGH administered subcutaneously daily at bedtime, rhGH and a structured resistance exercise program, structured resistance exercise with placebo injections, or placebo injections only. MEASUREMENTS: Muscle biopsy specimens were obtained from the vastus lateralis muscle. Isokinetic dynamometry strength tests were used to monitor individual progress and to adjust the weights used in the exercise program. Serum insulin-like growth factor-I (IGF-I) was measured and body composition was measured using a Hologic QDR 1000W dual X-ray densitometer. RESULTS: The administration of rhGH resulted in significant increase in circulating IGF-I levels in the individuals receiving rhGH treatment. Muscle strength increased significantly in both the rhGH/exercise (+55.6%, P = .0004) as well as the exercise alone (+47.8%, P = .0005) groups. There was a significant increase in the proportion of type 2 fibers between baseline and six months in the combined rhGH treated subjects versus those not receiving rhGH (P = .027). CONCLUSIONS: Our results are encouraging in that they suggest an effect of growth hormone on a specific aging-correlated deficit. IGF-I was increased by administrating rhGH and muscle strength was increased by exercise. The administration of rhGH to frail older individuals in this study resulted in significant changes in the proportions of fiber types. Whether changes in fiber cross-sectional area or absolute number occur with long-term growth hormone administration requires further study. [source] Growth promoting effects of human placental lactogen during early organogenesis: a link to insulin-like growth factorsJOURNAL OF ANATOMY, Issue 6 2001AHMET KAGAN KARABULUT Many maternally derived factors may be involved in the regulation of embryonic growth but the control mechanisms involved are poorly understood. Human placental lactogen (hPL) has been implicated in playing a role in the control of embryonic growth. Several investigators suggested that there may be a possible link between the effects of this hormone and insulin-like growth factors (IGFs). In order to determine the growth promoting potential of hPL and involvement of IGFs in the mechanism of action of the hormone, 9.5 d rat embryos were cultured in vitro for 48 h in depleted serum in the presence and absence of hPL with additional IGF antisera. The growth supporting capacity of the serum was reduced by removal of low molecular weight molecules by prolonged filtration of the serum using filters with a molecular weight exclusion of 30 kDa. Addition of hPL (3.2,25.6 ng/ml) to depleted serum significantly improved embryonic growth and development, suggesting that the developing embryo may utilise hPL. The presence of antisera against hPL, IGF-I and -II abolished the hPL-induced increase in the development in all parameters suggesting that there may be a possible link between the IGFs and the effects of hPL on rat embryonic development and this hormone may achieve its growth promoting effects via IGFs. [source] Metabolic and luteal function in winter-calving Spanish beef cows as affected by calf management and breedJOURNAL OF ANIMAL PHYSIOLOGY AND NUTRITION, Issue 3 2010J. Álvarez-Rodríguez Summary This experiment aimed at evaluating the effect of calf management and breed on the metabolic and luteal function of post-partum beef cows fed at maintenance. Fifty multiparous cows, 22 Parda de Montaña (PA) and 28 Pirenaica (PI), were assigned to either suckling once-daily for 30 min (RESTR) or ad libitum (ADLIB) from the day after calving. Blood samples were collected to analyse metabolites [non-esterified fatty acids (NEFA), ,-hydroxybutyrate, total protein and urea)], insulin-like growth factor-I (IGF-I) and progesterone (P4) at different intervals. Cows from RESTR maintained their live-weight (LW) over the first 3 months post-partum, whereas ADLIB cows lost nearly 4% LW. Both genotypes showed similar LW gains during this period (p > 0.10). Calf daily gains were lower in RESTR than in ADLIB treatment (p < 0.05), but similar across breeds (p > 0.10). Milk and lactose production were lower in RESTR cows than in ADLIB (p < 0.05). Milk and protein yield were greater in PA than in PI breed (p < 0.05). Serum NEFA, total protein and urea were higher in PI cows suckling ADLIB than in the rest (p < 0.05). Cows from PI breed had greater NEFA values than PA ones on the first week post-partum (p < 0.001). Circulating IGF-I was not affected by suckling frequency, breed nor their interaction (p > 0.10). Suckling frequency, but not breed, affected the interval from calving to first ovulation (p < 0.001), being shorter in RESTR than in ADLIB cows. In conclusion, the ad libitum suckling practice improved cow milk yield and offspring gain compared to once-daily suckling for 30 min from the day after calving, at the expense of impairing the onset of cyclicity. The effect of calf management was confounded with breed on the studied blood biochemical constituents, but any of these metabolites influenced the role of endocrine IGF-I in these genotypes. [source] Insulin-like growth factor I in growing thoroughbredsJOURNAL OF ANIMAL PHYSIOLOGY AND NUTRITION, Issue 9-10 2007W. B. Staniar Summary The objective of this longitudinal study was to characterize growth and plasma insulin-like growth factor I (IGF-I) concentrations in pasture-raised thoroughbreds fed two sources of dietary energy. Mares and foals were randomly assigned to either a sugar and starch (SS) or fat and fibre (FF)-rich feed, and plasma IGF-I and growth were measured once a month from 1 to 16 months of age. These dependent variables were also compared with day length and ambient temperature. There was an association between plasma IGF-I concentration and average daily gain (ADG) (r = 0.32, p < 0.001). There were also clear seasonal patterns in both ADG and plasma IGF-I, with high values in June and May, and a low value in March. Plasma IGF-I and ADG were positively associated with day length and temperature. Plasma IGF-I was never higher (p > 0.10) in the FF group when compared with the SS group, and was higher in the SS group during a rapid growth phase in the spring of year 2 (p < 0.10). The results establish an association between ADG and IGF-I in the horse and indicate that environment and age may influence this relationship. In addition, plasma IGF-I is influenced by dietary energy source at particular times of year. This link has important implications in designing feeding management strategies that are aimed at addressing skeletal development. [source] Additional dietary zinc for weaning piglets is associated with elevated concentrations of serum IGF-IJOURNAL OF ANIMAL PHYSIOLOGY AND NUTRITION, Issue 9-10 2004D. Carlson Summary Two experiments were performed in order to study how weaning and post-weaning dietary zinc level affect serum IGF-I. Further, whether the growth-enhancing effect of 2500 ppm of dietary zinc (Zn2500) and/or 175 ppm of dietary copper (Cu175) in post-weaning diets is associated with elevated serum IGF-I levels in piglets was studied. Experiment 1 included 54 piglets (six litters of nine piglets). One piglet from every litter was assigned to a control group (blood sampled 1 day before weaning). At weaning the remaining eight piglets from every litter were allocated randomly to four dietary treatments with increasing zinc inclusions (Zn100, Zn250, Zn1000, Zn2500). In exp. 2, 48 piglets (six litters of eight piglets) were allocated to four dietary treatments (Zn100, Zn100Cu175, Zn2500, Zn2500Cu175). All piglets in exp. 1 were blood sampled at ,1, 1,2, 5,6 or 14,15 days after weaning and in exp. 2 blood samples were taken from all pigs 5,7 days after weaning. Feed intake was recorded per pen (two piglets) and weight gain was recorded for every piglet. Just after weaning feed intake was very low, piglets lost weight and serum IGF-I decreased in exp. 1. However, the piglets fed 2500 ppm of zinc reached pre-weaning levels of serum IGF-I at 14,15 days post-weaning, whereas piglets receiving lower zinc levels showed no changes in serum IGF-I. In exp. 2, additional dietary zinc in weaning diets for piglets was found to be associated with increased feed intake, improved growth rate and increased serum IGF-I. High levels of dietary copper did not affect any of these measurements. Zinc-induced rise in serum IGF-I was partly due to increased feed intake. After correcting for differences in feed intake, zinc significantly increased serum IGF-I. However, to completely separate effects of feed intake from effects of zinc status, pair-feeding should be considered in future studies. [source] Evolution of blood parameters during weight loss in experimental obese Beagle dogsJOURNAL OF ANIMAL PHYSIOLOGY AND NUTRITION, Issue 3-4 2004M. Diez Summary The effects of weight loss on hormonal and biochemical blood parameters were measured monthly [carnitine, creatinine, urea, free T4 (fT4), total T4 (TT4), plasma alkaline phosphatases (ALP), aspartate aminotransferase (AST), alanine aminotransferase (ALT), potassium and total proteins] or bimonthly [cholesterol, triglycerides, non-esterified fatty acids (NEFA), insulin-like growth factor I (IGF-I), glucose, insulin] in eight obese Beagles dogs fed either a high protein dry diet, DP (crude protein 47.5%, on dry matter basis) or a commercial high fibre diet, HF (crude protein 23.8%, crude fibre 23.3%). The dogs were allotted to two groups according to sex and body weight (BW) and they were respectively fed with the DP or the control HF diet during 12,26 weeks, until they reach their optimal BW. The plasma basal triglycerides and cholesterol concentrations were decreased by the two diets but the difference was only significant for the DP diet. The plasma mean NEFA concentration increased regularly over the period with the HF diet, without significant difference between the two diets. No effect of diet or weight loss was observed on plasma carnitine, urea, creatinine, ALP, AST, ALT, potassium, TT4, FT4, IGF-I, glucose and insulin. Weight loss induced a decrease in fT4 plasma concentration (p < 0.001). The high protein diet allowed a safe weight loss. [source] Characterization of human fetal osteoblasts by microarray analysis following stimulation with 58S bioactive gel-glass ionic dissolution productsJOURNAL OF BIOMEDICAL MATERIALS RESEARCH, Issue 2 2006Ioannis Christodoulou Abstract Bioactive glasses dissolve upon immersion in culture medium, releasing their constitutive ions in solution. There is evidence suggesting that these ionic dissolution products influence osteoblast-specific processes. Here, we investigated the effect of 58S sol,gel-derived bioactive glass (60 mol % SiO2, 36 mol % CaO, 4 mol % P2O5) dissolution products on primary osteoblasts derived from human fetal long bone explant cultures (hFOBs). We used U133A human genome GeneChip® oligonucleotide arrays to examine 22,283 transcripts and variants, which represent over 18,000 well-substantiated human genes. Hybridization of samples (biotinylated cRNA) derived from monolayer cultures of hFOBs on the arrays revealed that 10,571 transcripts were expressed by these cells, with high confidence. These included transcripts representing osteoblast-related genes coding for growth factors and their associated molecules or receptors, protein components of the extracellular matrix (ECM), enzymes involved in degradation of the ECM, transcription factors, and other important osteoblast-associated markers. A 24-h treatment with a single dosage of ionic products of sol,gel 58S dissolution induced the differential expression of a number of genes, including IL-6 signal transducer/gp130, ISGF-3/STAT1, HIF-1 responsive RTP801, ERK1 p44 MAPK (MAPK3), MAPKAPK2, IGF-I and IGFBP-5. The over 2-fold up-regulation of gp130 and MAPK3 and down-regulation of IGF-I were confirmed by real-time RT-PCR analysis. These data suggest that 58S ionic dissolution products possibly mediate the bioactive effect of 58S through components of the IGF system and MAPK signaling pathways. © 2005 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 2006 [source] |