Home About us Contact | |||
Identical Sequences (identical + sequence)
Selected AbstractsHorizontal transmission of Wolbachia in a Drosophila communityECOLOGICAL ENTOMOLOGY, Issue 4 2005Eleanor R. Haine Abstract., 1.,Wolbachia bacteria are reproductive parasites of arthropods and infect an estimated 20% of all insect species worldwide. In order to understand patterns of Wolbachia infection, it is necessary to determine how infections are gained or lost. Wolbachia transmission is mainly vertical, but horizontal transmission between different host species can result in new infections, although its ecological context is poorly understood. Horizontal transmission is often inferred from molecular phylogenies, but could be confounded by recombination between different Wolbachia strains. 2.,This study addressed these issues by using three genes: wsp, ftsZ, and groE, to study Wolbachia infections in fruit- and fungus-feeding Drosophila communities in Berkshire, U.K. 3.,Identical sequences were found for all three genes in Drosophila ambigua and Drosophila tristis. This suggests horizontal transmission of Wolbachia between these two previously unstudied Drosophila species, which may be the result of the two host species sharing the same food substrates or parasites. 4.,Wolbachia infections might be lost from species due to curing by naturally occurring antibiotics and the presence of these is likely to vary between larval food substrates. 5.,It was investigated whether Wolbachia incidence was lower in fungus-feeding than in fruit-feeding Drosophila species, but no significant difference based on food substrate was found. [source] Prion domain interaction responsible for species discrimination in yeast [PSI+] transmissionGENES TO CELLS, Issue 12 2003Hideyuki Hara Background:, The yeast [PSI+] factor is transmitted by a prion mechanism involving self-propagating Sup35 aggregates. As with mammalian prions, a species barrier prevents prion transmission between yeast species. The N-terminal of Sup35 of Saccharomyces cerevisiae, necessary for [PSI+], contains two species-signature elements,a Gln/Asn-rich region (residues 1,41; designated NQ) that is followed by oligopeptide repeats (designated NR). Results:, In this study, we show that S. cerevisiae[PSI+] is transmissible through plasmid shuffling and cytoplasmic transfer to heterotypic Sup35s whose NQ is replaced with the S. cerevisiae NQ. In addition to homology, the N-terminal location is essential for NQ mediated susceptibility to [PSI+] transmission amongst heterotypic Sup35s. In vitro, a swap of NQ of S. cerevisiae Sup35 led to cross seeding of amyloid formation. Conclusions:, These findings suggest that NQ discriminates self from non-self, and is sufficient to initiate [PSI+] transmission irrespective of whether NR is heterotypic. NR as well as NQ alone coalesces into existing [PSI+] aggregates, showing their independent potentials to interact with the identical sequence in the [PSI+] conformer. The role of NQ and NR in [PSI+] prion formation is discussed. [source] Detection of hazelnut DNA traces in chocolate by PCRINTERNATIONAL JOURNAL OF FOOD SCIENCE & TECHNOLOGY, Issue 6 2003Lieve Herman Summary By use of the DneasyTM Plant Tissue kit (Qiagen Inc.) plant DNA could be extracted from chocolate and related matrices. The polymerase chain reaction (PCR) detection of mitochondrial plant DNA is directly correlated with the length of the amplified fragment indicating shearing of DNA during chocolate production. Hazelnut DNA could be specifically detected in chocolate matrices with primers derived from the intron between exon B and C of the mitochondrial gene nad1. Specificity was confirmed towards individual chocolate ingredients and in 20 hazelnut negative chocolates. From taxonomically closely related plant species, only Carpinus turczaninovii, Ostrya carpinifolia and Corylus americana showed cross reaction, this was because of the identical sequence of the nad1 fragment. Application of extra MgCl2 throughout the DNA extraction procedure and of a specially designed Mg2+ buffered PCR, increased the detection sensitivity of co-processed hazelnut in chocolate to 0.001% or 10 ppm. [source] Schwann cell expression of PLP1 but not DM20 is necessary to prevent neuropathyANNALS OF NEUROLOGY, Issue 3 2003Michael E. Shy MD Proteolipid protein (PLP1) and its alternatively spliced isoform, DM20, are the major myelin proteins in the CNS, but are also expressed in the PNS. The proteins have an identical sequence except for 35 amino acids in PLP1 (the PLP1-specific domain) not present in DM20. Mutations of PLP1/DM20 cause Pelizaeus-Merzbacher Disease (PMD), a leukodystrophy, and in some instances, a peripheral neuropathy. To identify which mutations cause neuropathy, we have evaluated a cohort of patients with PMD and PLP1 mutations for the presence of neuropathy. As shown previously, all patients with PLP1 null mutations had peripheral neuropathy. We also identified 4 new PLP1 point mutations that cause both PMD and peripheral neuropathy, three of which truncate PLP1 expression within the PLP1-specific domain, but do not alter DM20. The fourth, a splicing mutation, alters both PLP1 and DM20, and is probably a null mutation. Six PLP1 point mutations predicted to produce proteins with an intact PLP1-specific domain do not cause peripheral neuropathy. Sixty-one individuals with PLP1 duplications also had normal peripheral nerve function. These data demonstrate that expression of PLP1 but not DMSO is necessary to prevent neuropathy, and suggest that the 35 amino acid PLP1-specific domain plays an important role in normal peripheral nerve function. Ann Neurol 2003 [source] Gene diversity of CYP153A and AlkB alkane hydroxylases in oil-degrading bacteria isolated from the Atlantic OceanENVIRONMENTAL MICROBIOLOGY, Issue 5 2010Liping Wang Summary Alkane hydroxylases, including the integral-membrane non-haem iron monooxygenase (AlkB) and cytochrome P450 CYP153 family, are key enzymes in bacterial alkane oxidation. Although both genes have been detected in a number of bacteria and environments, knowledge about the diversity of these genes in marine alkane-degrading bacteria is still limited, especially in pelagic areas. In this report, 177 bacterial isolates, comprising 43 genera, were obtained from 18 oil-degrading consortia enriched from surface seawater samples collected from the Atlantic Ocean. Many isolates were confirmed to be the first oil-degraders in their affiliated genera including Brachybacterium, Idiomarina, Leifsonia, Martelella, Kordiimonas, Parvibaculum and Tistrella. Using degenerate PCR primers, alkB and CYP153A P450 genes were surveyed in these bacteria. In total, 82 P450 and 52 alkB gene fragments were obtained from 80 of the isolates. These isolates mainly belonged to Alcanivorax, Bacillus, Erythrobacter, Martelella, Parvibaculum and Salinisphaera, some of which were reported, for the first time, to encode alkane hydroxylases. Phylogenetic analysis showed that both genes were quite diverse and formed several clusters, most of which were generated from various Alcanivorax bacteria. Noticeably, some sequences, such as those from the Salinisphaera genus, were grouped into a distantly related novel cluster. Inspection of the linkage between gene and host revealed that alkB and P450 tend to coexist in Alcanivorax and Salinisphaera, while in all isolates of Parvibaculum, only P450 genes were found, but of multiple homologues. Multiple homologues of alkB mostly cooccurred in Alcanivorax isolates. Conversely, distantly related isolates contained similar or even identical sequences. In summary, various oil-degrading bacteria, which harboured diverse P450 and alkB genes, were found in the surface water of Atlantic Ocean. Our results help to show the diversity of P450 and alkB genes in prokaryotes, and to portray the geographic distribution of oil-degrading bacteria in marine environments. [source] In situ lateral transfer of symbiosis islands results in rapid evolution of diverse competitive strains of mesorhizobia suboptimal in symbiotic nitrogen fixation on the pasture legume Biserrula pelecinus L.ENVIRONMENTAL MICROBIOLOGY, Issue 10 2007Kemanthi G. Nandasena Summary The multi-billion dollar asset attributed to symbiotic nitrogen fixation is often threatened by the nodulation of legumes by rhizobia that are ineffective or poorly effective in N2 fixation. This study investigated the development of rhizobial diversity for the pasture legume Biserrula pelecinus L., 6 years after its introduction, and inoculation with Mesorhizobium ciceri bv. biserrulae strain WSM1271, to Western Australia. Molecular fingerprinting of 88 nodule isolates indicated seven were distinctive. Two of these were ineffective while five were poorly effective in N2 fixation on B. pelecinus. Three novel isolates had wider host ranges for nodulation than WSM1271, and four had distinct carbon utilization patterns. Novel isolates were identified as Mesorhizobium sp. using 16S rRNA, dnaK and GSII phylogenies. In a second study, a large number of nodules were collected from commercially grown B. pelecinus from a broader geographical area. These plants were originally inoculated with M. c bv. biserrulae WSM1497 5,6 years prior to isolation of strains for this study. Nearly 50% of isolates from these nodules had distinct molecular fingerprints. At two sites diverse strains dominated nodule occupancy indicating recently evolved strains are highly competitive. All isolates tested were less effective and six were ineffective in N2 fixation. Twelve randomly selected diverse isolates clustered together, based on dnaK sequences, within Mesorhizobium and distantly to M. c bv. biserrulae. All 12 had identical sequences for the symbiosis island insertion region with WSM1497. This study shows the rapid evolution of competitive, yet suboptimal strains for N2 fixation on B. pelecinus following the lateral transfer of a symbiosis island from inoculants to other soil bacteria. [source] Frequent detection of cell-associated HIV-1 RNA in patients with plasma viral load <50 copies/mlJOURNAL OF MEDICAL VIROLOGY, Issue 10 2007Bernd Kupfer Abstract Despite prolonged undetectable plasma viral load some HIV-1 infected patients have been reported to develop resistance-associated mutations leading to treatment failure. The mechanisms for this phenomenon and the point of origin for residual viral evolution are still not elucidated. In order to quantify cell-associated HIV-1 RNA in patients with different levels of plasma viremia paired cell-associated HIV-1 RNA loads and plasma viral loads were determined. Weak inverse correlation between these parameters and the amounts of CD4+ T cells was observed, whereas there was no correlation between viral loads and CD8+ T cells or CD14+ monocytes, respectively. In a subset of patients, cell-associated and plasma HIV-1 env V3 sequences were analyzed. Plasma viral load and the amount of cell-associated HIV-RNA correlated strongly. However, in 62.3% of patients with undetectable plasma viral load cell-associated HIV-RNA could be detected. Analyses of HIV-RNA in plasma and blood cells showed identical sequences in 4/19 patients, whereas the majority of patients had differing HIV-1 RNA sequences in plasma and cells, respectively. In summary, this study shows that residual viral replication in peripheral blood still occurs in the majority of patients with undetectable plasma viral load. Since these replication events could lead to ongoing viral evolution it should be considered to optimize antiretroviral therapy in order to minimize the development of drug resistance. J. Med. Virol. 79:1440,1445, 2007. © Wiley-Liss, Inc. [source] Molecular epidemiology of hepatitis A virus in a group of Portuguese citizens living in Lisbon areaJOURNAL OF MEDICAL VIROLOGY, Issue 5 2007L. Rodrigues Abstract Hepatitis A virus (HAV) is the most important cause of acute infectious hepatitis worldwide. In Portugal, due to improvements in sanitation epidemic outbreaks of HAV infection have become less frequent. This report is the first, to our knowledge that characterized HAV in Portugal. For the detection and molecular characterization of HAV cases in a group of Portuguese individuals in the Lisbon area, 31 serum samples were tested: 8 from symptomatic children from an acute hepatitis A outbreak in a Roma (Gipsies) community (2004,2005), and 22 from patients with acute HAV from sporadic cases (2005,2006). A sample of CSF involved in a case of meningitis was also included. IgM anti-HAV detection and nested reverse transcription (RT-PCR), with primers located at the VP1-P2a region, was undertaken to detect HAV genome. In positive samples, molecular characterization was followed by phylogenetic analysis. All samples (n,=,31) were positive for IgM anti-HAV. HAV RNA was found in 96.7% of cases. All isolates were classified as genotype I: 22 belonged to sub-genotype IA (73.3%), and 8 to sub-genotype IB (26.7%). All strains obtained from an acute HAV outbreak had sub-genotype IA, in which seven isolates (87.5%) had identical sequences. In HAV sporadic cases sub-genotypes IA and IB were identified, and this may reflect the co-circulation of these two sub-genotypes in Portugal. Molecular epidemiology of HAV infection in this group of Portuguese appears to be similar to other European countries. HAV phylogenetic studies can provide important information for the design of appropriate public health measures. J. Med. Virol. 79:483,487, 2007. © 2007 Wiley-Liss, Inc. [source] Multiple copies of cytochrome oxidase 1 in species of the fungal genus FusariumMOLECULAR ECOLOGY RESOURCES, Issue 2009SCOTT R. GILMORE Abstract Using data from published mitochondrial or complete genomes, we developed and tested primers for amplification and sequencing of the barcode region of cytochrome oxidase 1 (COX1) of the fungal genus Fusarium, related genera of the order Hypocreales, and degenerate primers for fungi in the subdivision Pezizomycotina. The primers were successful for amplifying and sequencing COX1 barcodes from 13 genera of Hypocreales (Acremonium, Beauveria, Clonostachys, Emericellopsis, Fusarium, Gliocladium, Hypocrea, Lanatonectria, Lecanicillium, Metarhizium, Monocillium, Neonectria and Stilbella), 22 taxa of Fusarium, and two genera in other orders (Arthrosporium, Monilochaetes). Parologous copies of COX1 occurred in several strains of Fusarium. In some, copies of the same length were detected either by heterozygous bases in otherwise clean sequences or in different replicates of amplification and sequencing events; this may indicate multiple transcribed copies. Other strains included one or two introns. Two intron insertion sites had at least two nonhomologous intron sequences among Fusarium species. Irrespective of whether the multiple copy issue could be resolved by sequencing RNA transcripts, developing a precise COX1 -based barcoding system for Fusarium may not be feasible. The overall divergence among homologous COX1 sequences obtained so far is rather low, with many species sharing identical sequences. [source] Characterization and functional analysis of PorB, a Chlamydia porin and neutralizing targetMOLECULAR MICROBIOLOGY, Issue 4 2000Aya Kubo A predicted protein (CT713) with weak sequence similarity to the major outer membrane protein (20.4% identity) in Chlamydia trachomatis was identified by Chlamydia genome analysis. We show that this protein is expressed, surface accessible, localized to the chlamydial outer membrane complex and functions as a porin. This protein, PorB, was highly conserved among different serovars, with nearly identical sequences between serovars D, B, C and L2. Sequence comparison between C. trachomatis and Chlamydia pneumoniae showed less conservation between species with 59.3% identity. Immunofluorescence staining with monospecific antisera to purified PorB revealed antigen localized within chlamydial inclusions and found throughout the developmental cycle. Antibodies to PorB neutralized infectivity of C. trachomatis in an in vitro neutralization assay confirming that PorB is surface exposed. As PorB was found to be in the outer membrane, as well as having weak structural characteristics similar to major outer membrane protein (MOMP) and other porins, a liposome-swelling assay was used to determine whether this protein had pore-forming capabilities. PorB had pore-forming activity and was shown to be different from MOMP porin activity. [source] Ultrastructure and large subunit rDNA sequences of Lepidodinium viride reveal a close relationship to Lepidodinium chlorophorum comb. nov. (=Gymnodinium chlorophorum)PHYCOLOGICAL RESEARCH, Issue 1 2007Gert Hansen SUMMARY The ultrastructure of the green dinoflagellate Lepididodinium viride M. M. Watanabe, S. Suda, I. Inouye Sawaguchi et Chihara was studied in detail. The nuclear envelope possessed numerous chambers each furnished with a nuclear pore, a similar arrangement to that found in other gymnodinioids. The flagellar apparatus was essentially identical to Gymnodinium chlorophorum Elbrächter et Schnepf, a species also containing chloroplasts of chlorophyte origin. Of particular interest was the connection of the flagellar apparatus to the nuclear envelope by means of both a fiber and a microtubular extension of the R3 flagellar root. This feature has not been found in other dinoflagellates and suggests a close relationship between these two species. This was confirmed by phylogenetic analysis based on partial sequences of the large subunit (LSU) rDNA gene of L. viride, G. chlorophorum and 16 other unarmoured dinoflagellates, including both the ,type' culture and a new Tasmanian isolate of G. chlorophorum. These two isolates had identical sequences and differed from L. viride by only 3.75% of their partial LSU sequences, considerably less than the difference between other Gymnodinium species. Therefore, based on ultrastructure, pigments and partial LSU rDNA sequences, the genus Lepidodinium was emended to encompass L. chlorophorum comb. nov. [source] Phytoplasma from little leaf disease affected sweetpotato in Western Australia: detection and phylogenyANNALS OF APPLIED BIOLOGY, Issue 1 2006F. Tairo Abstract Symptoms of leaf and stem chlorosis and plant stunting were common in sweetpotato plants (Ipomoea batatas) in farmers' fields in two widely separated locations, Kununurra and Broome, in the tropical Kimberley region in the state of Western Australia in 2003 and 2004. In the glasshouse, progeny plants developed similar symptoms characteristic of phytoplasma infection, consisting of chlorosis and a stunted, bushy appearance as a result of proliferation of axillary shoots. The same symptoms were reproduced in the African sweetpotato cv. Tanzania grafted with scions from the plant Aus1 with symptoms and in which no viruses were detected. PCR amplification with phytoplasma-specific primers and sequencing of the 16S-23S rRNA gene region from two plants with symptoms, Aus1 (Broome) and Aus142A (Kununurra), revealed highly identical sequences. Phylogenetic analysis of the 16S rRNA gene sequences obtained from previously described sweetpotato phytoplasma and inclusion of other selected phytoplasma for comparison indicated that Aus1 and Aus142A belonged to the Candidatus Phytoplasma aurantifolia species (16SrII). The 16S genes of Aus1 and Aus142A were almost identical to those of sweet potato little leaf (SPLL-V4) phytoplasma from Australia (99.3%,99.4%) but different from those of the sweetpotato phytoplasma from Taiwan (95.5%,95.6%) and Uganda (SPLL-UG, 90.0%,90.1%). Phylogenetically, Aus1, Aus142A and a phytoplasma previously described from sweetpotato in the Northern Territory of Australia formed a group distinctly different from other isolates within Ca. Phytoplasma aurantifolia species. These findings indicate that novel isolates of the 16SrII-type phytoplasma pose a potential threat to sustainable sweetpotato production in northern Australia. [source] |