Home About us Contact | |||
Ice Cream Mixes (ice + cream_mix)
Selected AbstractsRHEOLOGICAL BEHAVIOR AND TIME-DEPENDENT CHARACTERIZATION OF ICE CREAM MIX WITH DIFFERENT SALEP CONTENTJOURNAL OF TEXTURE STUDIES, Issue 3 2005S. KU ABSTRACT The effect of salep concentration on the rheological characteristics of ice cream mixes (0.5,1.5% salep content), prepared from nonfat cow's milk and sugar, was studied using a controlled stress rheometer. The flow curves and time-dependent flow properties of the ice cream mixes were assessed at different temperatures. The ice cream mixes' samples showed slightly thixotropic behavior, which was reduced as the salep content decreased. The forward and backward measurements of the flow curves of ice cream mixes were modeled with the power law model. The ice cream mixes showed pseudoplastic flow behavior after destruction of the thixotropic structure. In mixes that were first presheared at a high shear rate flow properties could also be described by the power law model. The second-order structural kinetic, first-order stress decay and Weltman models were applied to model the time-dependent flow properties of the ice cream mixes. Among these, the first-order stress decay model was found to fit well the experimental data. [source] RHEOLOGICAL CHARACTERIZATION OF WET FOOD FOAMSJOURNAL OF TEXTURE STUDIES, Issue 2 2007B. EDGAR CHÁVEZ-MONTES ABSTRACT Incorporating air bubbles into foods is a technical challenge, and in all cases, the fabrication of a foam goes through a "wet foam" stage, where bubbles are diluted in the food matrix and require stabilization. Sometimes, the end product is itself a wet foam, and a popular example is ice cream. This article describes a study of structural aspects of wet foams, where the continuous phase is a fluid, by means of dynamic rheological tests. The effects of formulation and processing conditions on aerated food foams are studied, and an example is presented for ice cream mix. The incorporation of gas bubbles at volume fractions of 50% or less modifies moderately the bulk rheological properties, and their effect can be predicted by the foam limit case. The continuous phase dominates to a great part the bulk's rheological behavior, and in the case of food systems, it stems from the presence of polysaccharide thickeners. PRACTICAL APPLICATIONS This work presents an alternative approach to study the rheological properties of short life and difficult-to-sample products, such as wet food foams, in a rheo-reactor. Through the analysis of mechanical properties in oscillatory regime, the structure and stability of wet food foams can be characterized immediately after being fabricated in situ. This work presents new insights on the foaming step of ice cream mix (decoupled from the freezing step), and shows how the mechanical properties are affected by the incorporation ofbubbles, by process conditions and by the presence of thickeners and emulsifiers. This work can be a valuable guide to decide on optimal process and formulation to fabricate wet food foams (e.g., ice cream, aerated desserts) with specific mechanical properties and stability. [source] Effects of Lactobacillus rhamnosus GG addition in ice creamINTERNATIONAL JOURNAL OF DAIRY TECHNOLOGY, Issue 4 2005CRISTINA ALAMPRESE A 24 full factorial experimental design was applied to verify the effects of Lactobacillus rhamnosus GG (LGG) addition in retail-manufactured ice cream stored at two different freezing temperatures (,16°C and ,28°C) and containing two different levels of sugar (15,22%) and fat (5,10%). In addition to microbial counts, the pH, acidity, viscosity of the mixes and functional properties of the ice creams were evaluated. Both fresh and frozen-thawed LGG cells underwent preliminary resistance tests to bile, antibiotics and acidity. The LGG strain proved to be highly resistant to most of the stress factors. When the micro-organism was added to ice cream mixes in a quantity of 108 cfu/g, it did not change the overrun, firmness or melting behaviour of the finished product. Regardless of formulation, no count decay of LGG cells was observed in ice cream stored for up to 1 year. [source] RHEOLOGICAL BEHAVIOR AND TIME-DEPENDENT CHARACTERIZATION OF ICE CREAM MIX WITH DIFFERENT SALEP CONTENTJOURNAL OF TEXTURE STUDIES, Issue 3 2005S. KU ABSTRACT The effect of salep concentration on the rheological characteristics of ice cream mixes (0.5,1.5% salep content), prepared from nonfat cow's milk and sugar, was studied using a controlled stress rheometer. The flow curves and time-dependent flow properties of the ice cream mixes were assessed at different temperatures. The ice cream mixes' samples showed slightly thixotropic behavior, which was reduced as the salep content decreased. The forward and backward measurements of the flow curves of ice cream mixes were modeled with the power law model. The ice cream mixes showed pseudoplastic flow behavior after destruction of the thixotropic structure. In mixes that were first presheared at a high shear rate flow properties could also be described by the power law model. The second-order structural kinetic, first-order stress decay and Weltman models were applied to model the time-dependent flow properties of the ice cream mixes. Among these, the first-order stress decay model was found to fit well the experimental data. [source] |