Ice Cover (ice + cover)

Distribution by Scientific Domains


Selected Abstracts


An experimental evaluation of ice cover effects on the dynamic behaviour of a concrete gravity dam

EARTHQUAKE ENGINEERING AND STRUCTURAL DYNAMICS, Issue 12 2002
Patrick Paultre
Abstract An extensive forced-vibration testing programme has been carried out on an 84-m concrete gravity dam located in northeastern Québec, Canada. The dam was subjected to a harmonic load on the crest in summer and severe winter conditions with temperatures ranging from ,10°C to ,15°C and a 1.0,1.5m ice cover. Acceleration and hydrodynamic frequency responses were obtained in different locations on the dam and in the reservoir. The main objective of the repeated tests was to investigate the effects of the ice cover on the dynamic behaviour of the dam,reservoir,foundation system, by comparing summer and winter results. Modifications in damping and resonance frequencies were observed, as well as an additional resonance that was attributed to an interaction of the dam with the ice cover. These findings provided a reliable and unique database for the investigations of dam,reservoir,foundation interaction and, in particular, the ice-cover effects for dams located in northern regions. Copyright © 2002 John Wiley & Sons, Ltd. [source]


Rock weathering creates oases of life in a High Arctic desert

ENVIRONMENTAL MICROBIOLOGY, Issue 2 2010
Sara Borin
Summary During primary colonization of rock substrates by plants, mineral weathering is strongly accelerated under plant roots, but little is known on how it affects soil ecosystem development before plant establishment. Here we show that rock mineral weathering mediated by chemolithoautotrophic bacteria is associated to plant community formation in sites recently released by permanent glacier ice cover in the Midtre Lovénbreen glacier moraine (78°53,N), Svalbard. Increased soil fertility fosters growth of prokaryotes and plants at the boundary between sites of intense bacterial mediated chemolithotrophic iron-sulfur oxidation and pH decrease, and the common moraine substrate where carbon and nitrogen are fixed by cyanobacteria. Microbial iron oxidizing activity determines acidity and corresponding fertility gradients, where water retention, cation exchange capacity and nutrient availability are increased. This fertilization is enabled by abundant mineral nutrients and reduced forms of iron and sulfur in pyrite minerals within a conglomerate type of moraine rock. Such an interaction between microorganisms and moraine minerals determines a peculiar, not yet described model for soil genesis and plant ecosystem formation with potential past and present analogues in other harsh environments with similar geochemical settings. [source]


Pacific herring, Clupea pallasi, recruitment in the Bering Sea and north-east Pacific Ocean, II: relationships to environmental variables and implications for forecasting

FISHERIES OCEANOGRAPHY, Issue 4 2000
Erik H. Williams
Previous studies have shown that Pacific herring populations in the Bering Sea and north-east Pacific Ocean can be grouped based on similar recruitment time series. The scale of these groups suggests large-scale influence on recruitment fluctuations from the environment. Recruitment time series from 14 populations were analysed to determine links to various environmental variables and to develop recruitment forecasting models using a Ricker-type environmentally dependent spawner,recruit model. The environmental variables used for this investigation included monthly time series of the following: southern oscillation index, North Pacific pressure index, sea surface temperatures, air temperatures, coastal upwelling indices, Bering Sea wind, Bering Sea ice cover, and Bering Sea bottom temperatures. Exploratory correlation analysis was used for focusing the time period examined for each environmental variable. Candidate models for forecasting herring recruitment were selected by the ordinary and recent cross-validation prediction errors. Results indicated that forecasting models using air and sea surface temperature data lagged to the year of spawning generally produced the best forecasting models. Multiple environmental variables showed marked improvements in prediction over single-environmental-variable models. [source]


THE EASTERN MARGIN OF GLACIATION IN THE BRITISH ISLES DURING THE YOUNGER DRYAS: THE BIZZLE CIRQUE, SOUTHERN SCOTLAND

GEOGRAFISKA ANNALER SERIES A: PHYSICAL GEOGRAPHY, Issue 3 2006
STEPHAN HARRISON
ABSTRACT. Geomorphological and sedimentological evidence of former glaciation in the Bizzle valley in the Cheviot Hills of northern England and southern Scotland was used to reconstruct the dimensions of a small topographically constrained glacier with an equilibrium line altitude (ELA) of 535 m. This was interpreted as having formed during Younger Dryas cooling; this is the only glacier to have been described from the area and is the most easterly site of Younger Dryas glaciation in the British Isles. Whilst glaciation at this time was extensive in the Lake District to the southwest, the restricted nature of Cheviot ice cover suggests that a steep west,east precipitation gradient existed in this region during the Younger Dryas. [source]


The Geologic Basis for a Reconstruction of a Grounded Ice Sheet in McMurdo Sound, Antarctica, at the Last Glacial Maximum

GEOGRAFISKA ANNALER SERIES A: PHYSICAL GEOGRAPHY, Issue 2-3 2000
George H. Denton
A grounded ice sheet fed from the Ross Embayment filled McMurdo Sound at the last glacial maximum (LGM). This sheet deposited the little-weathered Ross Sea drift sheet, with far-traveled Transantarctic Mountains (TAM) erratics, on lower slopes of volcanic islands and peninsulas in the Sound, as well as on coastal forelands along the TAM front. The mapped upper limit of this drift, commonly marked by a distinctive moraine ridge, shows that the ice-sheet surface sloped landward across McMurdo Sound from 710 m elevation at Cape Crozier to 250 m in the eastern foothills of the Royal Society Range. Ice from the Ross Embayment flowed westward into the sound from both north and south of Ross Island. The northern flowlines were dominant, deflecting the southern flowlines toward the foothills of the southern Royal Society Range. Ice of the northern flowlines distributed distinctive kenyte erratics, derived from western Ross Island, in Ross Sea drift along the TAM front between Taylor and Miers Valleys. Lobes from grounded ice in McMurdo Sound blocked the mouths of TAM ice-free valleys, damming extensive proglacial lakes. A floating ice cover on each lake formed a conveyor that transported glacial debris from the grounded ice lobes deep into the valleys to deposit a unique glaciolacustrine facies of Ross Sea drift. The ice sheet in McMurdo Sound became grounded after 26,860 14C yr bp. It remained near its LGM position between 23,800 14C yr bp and 12,700 14C yr bp. Recession was then slow until sometime after 10,794 14C yr bp. Grounded ice lingered in New Harbor in the mouth of Taylor Valley until 8340 14C yr bp. The southward-retreating ice-sheet grounding line had penetrated deep into McMurdo Sound by 6500 14C yr bp. The existence of a thick ice sheet in McMurdo Sound is strong evidence for widespread grounding across the Ross Embayment at the LGM. Otherwise, the ice-sheet surface would not have sloped landward, nor could TAM erratics have been glacially transported westward into McMurdo Sound from farther offshore in the Ross Embayment. [source]


The sedimentary structure of the Lomonosov Ridge between 88°N and 80°N

GEOPHYSICAL JOURNAL INTERNATIONAL, Issue 2 2005
Wilfried Jokat
SUMMARY While the origin of the 1800-km-long Lomonosov Ridge (LR) in the Central Arctic Ocean is believed to be well understood, details on the bathymetry and especially on the sediment and crustal structure of this unique feature are sparse. During two expeditions in 1991 and 1998 into the Central Arctic Ocean several high quality seismic lines were collected along the margin of the ridge and in the adjacent Makarov Basin (MB). The lines collected between 87°36,N and 80°N perpendicular to and along the LR show a sediment starved continental margin with a variety of geological structures. The different features may reflect the different geological histories of certain ridge segments and/or their different subsidence histories. The sediments in the deep MB have thicknesses up to 2.2 km (3 s TWT) close to the foot of the ridge. At least in part basement reflections characteristics suggest oceanic crust. The acoustically stratified layers are flat lying, except in areas close to the ridge. Seismic units on the LR can be divided into two units based on refraction velocity data and the internal geometry of the reflections. Velocities <3.0 km s,1 are considered to represent Cenozoic sediments deposited after the ridge subsided below sea level. Velocities >4.0 km s,1 are associated with faulted sediments at deeper levels and may represent acoustic basement, which was affected by the Late Cretaceous/Early Cenozoic rift events. Along large parts of the ridge the transition of the two units is associated with an erosional unconformity. Close to the Laptev Sea such an erosional surface may not be present, because of the initial great depths of the rocks. Here, the deeper strata are affected by tectonism, which suggests some relative motion between the LR and the Laptev Shelf. Stratigraphic correlation with the Laptev Sea Shelf suggests that the ridge has not moved as a separate plate over the past 10 Myr. The seismic and regional gravity data indicate that the ridge broadens towards the Laptev Shelf. Although the deeper structure may be heavily intruded and altered, the LR appears to extend eastwards as far as 155°E, a consequence of a long-lived Late Cretaceous rift event. The seismic data across LR support the existence of iceberg scours in the central region of the ridge as far south as 81°N. However, no evidence for a large erosional events due to a more than 1000-m-thick sea ice cover is visible from the data. South of 85°N the seismic data indicate the presence of a bottom simulating reflector along all lines. [source]


Variation in Serripes groenlandicus (Bivalvia) growth in a Norwegian high-Arctic fjord: evidence for local- and large-scale climatic forcing

GLOBAL CHANGE BIOLOGY, Issue 9 2006
WILLIAM G. AMBROSE Jr.
Abstract We examined the growth rate of the circumpolar Greenland Cockle (Serripes groenlandicus) over a period of 20 years (1983,2002) from Rijpfjord, a high-Arctic fjord in northeast Svalbard (80°10,N, 22°15,E). This period encompassed different phases of large-scale climatic oscillations with accompanying variations in local physical variables (temperature, atmospheric pressure, precipitation, sea ice cover), allowing us to analyze the linkage between growth rate, climatic oscillations, and their local physical and biological manifestations. Standard growth index (SGI), an ontogenetically adjusted measure of annual growth, ranged from a low of 0.27 in 2002 up to 2.46 in 1996. Interannual variation in growth corresponded to the Arctic climate regime index (ACRI), with high growth rates during the positive ACRI phase characterized by cyclonic ocean circulation and a warmer and wetter climate. Growth rates were influenced by local manifestations of the ACRI: positively correlated with precipitation and to a lesser extent negatively correlated with atmospheric pressure. A multiple regression model explains 65% of the variability in growth rate by the ACRI and precipitation at the nearest meteorological station. There were, however, complexities in the relationship between growth and physical variables, including an apparent 1 year lag between physical forcing changes and biological response. Also, when the last 4 years of poor growth are excluded, there is a very strong negative correlation with ice cover on a pan-arctic scale. Our results suggest that bivalves, as sentinels of climate change on multi-decadal scales, are sensitive to environmental variations associated with large-scale changes in climate, but that the effects will be determined by changes in environmental parameters regulating marine production and food availability on a local scale. [source]


Contrasting population changes in sympatric penguin species in association with climate warming

GLOBAL CHANGE BIOLOGY, Issue 3 2006
JAUME FORCADA
Abstract Climate warming and associated sea ice reductions in Antarctica have modified habitat conditions for some species. These include the congeneric Adélie, chinstrap and gentoo penguins, which now demonstrate remarkable population responses to regional warming. However, inconsistencies in the direction of population changes between species at different study sites complicate the understanding of causal processes. Here, we show that at the South Orkney Islands where the three species breed sympatrically, the less ice-adapted gentoo penguins increased significantly in numbers over the last 26 years, whereas chinstrap and Adélie penguins both declined. These trends occurred in parallel with regional long-term warming and significant reduction in sea ice extent. Periodical warm events, with teleconnections to the tropical Pacific, caused cycles in sea ice leading to reduced prey biomass, and simultaneous interannual population decreases in the three penguin species. With the loss of sea ice, Adélie penguins were less buffered against the environment, their numbers fluctuated greatly and their population response was strong and linear. Chinstrap penguins, considered to be better adapted to ice-free conditions, were affected by discrete events of locally increased ice cover, but showed less variable, nonlinear responses to sea ice loss. Gentoo penguins were temporarily affected by negative anomalies in regional sea ice, but persistent sea ice reductions were likely to increase their available niche, which is likely to be substantially segregated from that of their more abundant congeners. Thus, the regional consequences of global climate perturbations on the sea ice phenology affect the marine ecosystem, with repercussions for penguin food supply and competition for resources. Ultimately, variability in penguin populations with warming reflects the local balance between penguin adaptation to ice conditions and trophic-mediated changes cascading from global climate forcing. [source]


Hydro-climatic impacts on the ice cover of the lower Peace River

HYDROLOGICAL PROCESSES, Issue 17 2008
Spyros Beltaos
Abstract Since the late 1960s, a paucity of ice-jam flooding in the lower Peace River has resulted in prolonged dry periods and considerable reduction in the area covered by lakes and ponds that provide habitat for aquatic life in the Peace,Athabasca Delta (PAD) region. Though major ice jams occur at breakup, antecedent conditions play a significant role in their frequency and severity. These conditions are partly defined by the mode of freezeup and the maximum thickness that is attained during the winter, shortly before the onset of spring and development of positive net heat fluxes to the ice cover. Data from hydrometric gauge records and from field surveys are utilized herein to study these conditions. It is shown that freezeup flows are considerably larger at the present time than before regulation, and may be responsible for more frequent formation of porous accumulation covers. Despite a concomitant rise in winter temperatures, solid-ice thickness has increased since the 1960s. Using a simple ice growth model, specifically developed for the study area, it is shown that porous accumulation covers enhance winter ice growth via accelerated freezing into the porous accumulation. Coupled with a reduction in winter snowfall, this effect can not only negate, but reverse, the effect of warmer winters on ice thickness, thus explaining present conditions. The present model is also shown to be a useful prediction tool, especially for extrapolating incomplete data to the end of the winter. Copyright © 2007 Crown in the right of Canada. Published by John Wiley & Sons, Ltd. [source]


The role of waves in ice-jam flooding of the Peace-Athabasca Delta

HYDROLOGICAL PROCESSES, Issue 19 2007
Spyros Beltaos
Abstract Since the late 1960s, a paucity of ice-jam flooding in the lower Peace River has resulted in prolonged dry periods and considerable reduction in the area covered by lakes and ponds that provide habitat for aquatic life in the Peace-Athabasca Delta (PAD) region. To identify the causes of this trend, and to develop mitigation or adaptation strategies under present and future climatic conditions, it is necessary to understand the mechanisms that lead to breakup of the ice cover and jamming within the delta reach of Peace River. Because the lower Peace is extremely flat, the long-period waves caused by spring snowmelt are not generally capable of dislodging the winter ice cover, even under conditions of very high flow. The ice cover decays in place and rubble generation, an essential condition for ice jamming, does not occur. However, major jams do, on occasion, form in the middle section of the river and make their way to the delta via repeated releases and stalls. Each release generates a steep wave which can greatly amplify the hydrodynamic forces that are applied on the ice cover and bring about its dislodgment. This is quantified for the lower Peace River by applying recently developed methodology to local hydrometric data. Detailed in situ observations in the spring of 2003, and additional data from 1997 and 2002, fully corroborate this conclusion. Implications to other flat rivers of northern Canada are discussed. Copyright © 2007 Crown in the right of Canada. Published by John Wiley & Sons, Ltd. [source]


Wavelet analysis of inter-annual variability in the runoff regimes of glacial and nival stream catchments, Bow Lake, Alberta

HYDROLOGICAL PROCESSES, Issue 6 2003
Melissa Lafrenière
Abstract Continuous wavelet analyses of hourly time series of air temperature, stream discharge, and precipitation are used to compare the seasonal and inter-annual variability in hydrological regimes of the two principal streams feeding Bow Lake, Banff National Park, Alberta: the glacial stream draining the Wapta Icefields, and the snowmelt-fed Bow River. The goal is to understand how water sources and flow routing differ between the two catchments. Wavelet spectra and cross-wavelet spectra were determined for air temperature and discharge from the two streams for summers (June,September) 1997,2000, and for rainfall and discharge for the summers of 1999 and 2000. The diurnal signal of the glacial runoff was orders of magnitude higher in 1998 than in other years, indicating that significant ice exposure and the development of channelized glacial drainage occurred as a result of the 1997,98 El Niño conditions. Early retreat of the snowpack in 1997 and 1998 led to a significant summer-long input of melt runoff from a small area of ice cover in the Bow River catchment; but such inputs were not apparent in 1999 and 2000, when snow cover was more extensive. Rainfall had a stronger influence on runoff and followed quicker flow paths in the Bow River catchment than in the glacial catchment. Snowpack thickness and catchment size were the primary controls on the phase relationship between temperature and discharge at diurnal time scales. Wavelet analysis is a fast and effective means to characterize runoff, temperature, and precipitation regimes and their interrelationships and inter-annual variability. The technique is effective at identifying inter-annual and seasonal changes in the relative contributions of different water sources to runoff, and changes in the time required for routing of diurnal meltwater pulses through a catchment. However, it is less effective at identifying changes/differences in the type of the flow routing (e.g. overland flow versus through flow) between or within catchments. Copyright © 2003 John Wiley & Sons, Ltd. [source]


Freezing of lakes on the Swiss plateau in the period 1901,2006

INTERNATIONAL JOURNAL OF CLIMATOLOGY, Issue 4 2008
H. J. Hendricks Franssen
Abstract Data of ice cover for deep Alpine lakes contain relevant climatological information since ice cover and winter temperature are closely related. For the first time, ice cover data from 11 lakes on the Swiss plateau have been collected and analysed for the period 1901,2006. The ice cover data used stem from systematic registration by individuals or groups (fishermen, an ice club and lake security service) and from several national, regional and local newspapers. It is found that in the past 40 years, and especially during the last two decades, ice cover on Swiss lakes was significantly reduced. This is in good agreement with the observed increase in the winter temperature in this period. The trend of reduced ice cover is more pronounced for lakes that freeze rarely than for the lakes that freeze more frequently. This agrees well with the stronger relative decrease in the probability to exceed the sum of negative degree days (NDD) needed for freezing the lakes that rarely freeze. The ice cover data are related with the temperature measurements such as the sum of NDD of nearby official meteorological stations by means of binomial logistic regression. The derived relationships estimate the probability of a complete ice cover on a lake as function of the sum of NDD. The sums of NDD needed are well related to the average depth of the lake (rNDD,Depth = 0.85). Diagnosing lake ice cover on the basis of the sum of NDD is much better than a prediction on the basis of a climatological freezing frequency. The variance of lake ice cover that cannot be explained by the sum of NDD is important for judging the uncertainty associated with climate reconstruction on the basis of data on lake ice cover. Copyright © 2007 Royal Meteorological Society [source]


A simulated reduction in Antarctic sea-ice area since 1750: implications of the long memory of the ocean

INTERNATIONAL JOURNAL OF CLIMATOLOGY, Issue 5 2005
Hugues Goosse
Abstract Using the three-dimensional coarse-resolution climate model ECBILT-CLIO, 1000-year long ensemble simulations with natural and anthropogenic forcings have been performed to study the long-term variation of the ice cover in the Southern Ocean. Over the last 250 years, the ice area has decreased by about 1 × 106 km2 in its annual mean. A comparison with experiments driven by only natural forcings suggests that this reduction is due to both natural and anthropogenic forcing, the latter playing a larger role than natural forcing over the last 150 years. Despite this contribution from anthropogenic forcing, the simulated ice area at the end of the 20th century is similar to that simulated during the 14th century because of the slow response of the Southern Ocean to radiative forcing. Sensitivity experiments performed with the model show that the model's initial conditions have a large influence on the simulated ice cover and that it is necessary to start simulations at least two centuries before the period of interest in order to remove this influence. Copyright © 2005 Royal Meteorological Society. [source]


Subantarctic flowering plants: pre-glacial survivors or post-glacial immigrants?

JOURNAL OF BIOGEOGRAPHY, Issue 3 2010
Nathalie Van der Putten
Abstract Aim, The aim here was to assess whether the present-day assemblage of subantarctic flowering plants is the result of a rapid post-Last Glacial Maximum (LGM) colonization or whether subantarctic flowering plants survived on the islands in glacial refugia throughout the LGM. Location, The circumpolar subantarctic region, comprising six remote islands and island groups between latitudes 46° and 55° S, including South Georgia in the South Atlantic Ocean, the Prince Edward Islands, Îles Crozet, Îles Kerguelen, the Heard Island group in the South Indian Ocean and Macquarie Island in the South Pacific Ocean. Methods, Floristic affinities between the subantarctic islands were assessed by cluster analysis applied to an up-to-date dataset of the phanerogamic flora in order to test for the existence of provincialism within the subantarctic. A review of the primary literature on the palaeobotany, geology and glacial history of the subantarctic islands was carried out and supplemented with additional palaeobotanical data and new field observations from South Georgia, Île de la Possession (Îles Crozet) and Îles Kerguelen. Results, First, a strong regionalism was observed, with different floras characterizing the islands in each of the ocean basins, and endemic species being present in the South Indian Ocean and South Pacific Ocean provinces. Second, the majority of the plant species were present at the onset of accumulation of post-glacial organic sediment and there is no evidence for the natural arrival of new immigrants during the subsequent period. Third, a review of geomorphological data suggested that the ice cover was incomplete during the LGM on the majority of the islands, and ice-free biological refugia were probably present even on the most glaciated islands. Main conclusions, Several independent lines of evidence favour the survival of a native subantarctic phanerogamic flora in local refugia during the LGM rather than a post-LGM colonization from more distant temperate landmasses in the Southern Hemisphere. [source]


Cross-cutting moraines reveal evidence for North Atlantic influence on glaciers in the tropical Andes,

JOURNAL OF QUATERNARY SCIENCE, Issue 3 2010
Jacqueline A. Smith
Abstract Surface exposure dating of boulders on an exceptionally well-preserved sequence of moraines in the Peruvian Andes reveals the most detailed record of glaciation heretofore recognised in the region. The high degree of moraine preservation resulted from dramatic changes in the flow path of piedmont palaeoglaciers at the southern end of the Cordillera Blanca (10° 00, S, 77° 16, W), which, in turn, generated a series of cross-cutting moraines. Sixty 10Be surface exposure ages indicate at least four episodes of palaeoglacier stabilisation (>65, ca. 65, ca. 32 and ca. 18,15,ka) and several minor advances or stillstands on the western side of the Nevado Jeulla Rajo massif. The absence of ages close to the global Last Glacial Maximum (ca. 21,ka) suggests that if an advance culminated at that time any resulting moraines were subsequently overridden. The timing of expanded ice cover in the central Peruvian Andes correlates broadly with the timing of massive iceberg discharge (Heinrich) events in the North Atlantic Ocean, suggesting a possible causal connection between southward migration of the Intertropical Convergence Zone during Heinrich events and a resultant increase in precipitation in the tropical Andes. Copyright © 2010 John Wiley & Sons, Ltd. [source]


Glacial modification of granite tors in the Cairngorms, Scotland,

JOURNAL OF QUATERNARY SCIENCE, Issue 8 2006
A. M. Hall
Abstract A range of evidence indicates that many granite tors in the Cairngorms have been modified by the flow of glacier ice during the Pleistocene. Comparisons with SW England and the use of a space,time transformation across 38 tor groups in the Cairngorms allow a model to be developed for progressive glacial modification. Tors with deeply etched surfaces and no, or limited, block removal imply an absence of significant glacial modification. The removal of superstructure and blocks, locally forming boulder trains, and the progressive reduction of tors to stumps and basal slabs represent the more advanced stages of modification. Recognition of some slabs as tor stumps from which glacial erosion has removed all superstructure allows the original distribution of tors to be reconstructed for large areas of the Cairngorms. Unmodified tors require covers of non-erosive, cold-based ice during all of the cold stages of the Middle and Late Pleistocene. Deformation beneath cold-based glacier ice is capable of the removal of blocks but advanced glacial modification requires former wet-based glacier ice. The depth of glacial erosion at former tor sites remains limited largely to the partial or total elimination of the upstanding tor form. Cosmogenic nuclide exposure ages (Phillips et al., 2006) together with data from weathering pit depths (Hall and Phillips, 2006), from the surfaces of tors and large erratic blocks require that the glacial entrainment of blocks from tors occurred in Marine Isotope Stages (MIS) 4,2, 6 and, probably, at least one earlier phase. The occurrence of glacially modified tors on or close to, the main summits of the Cairngorms requires full ice cover over the mountains during these Stages. Evidence from the Cairngorms indicates that tor morphology can be regarded as an important indicator of former ice cover in many formerly glaciated areas, particularly where other evidence of ice cover is sparse. Recognition of the glacial modification of tors is important for debates about the former existence of nunataks and refugia. Copyright © 2006 John Wiley & Sons, Ltd. [source]


Phytoplankton below the ice cover in Lake Teletskoye, a deep oligotrophic lake in western Siberia

LAKES & RESERVOIRS: RESEARCH AND MANAGEMENT, Issue 3 2007
Elena Y. Mitrofanova
Abstract The composition, biomass and pigments of the phytoplankton population below the ice cover in Lake Teletskoye were investigated in March 2006. It was found that the composition and biomass of phytoplankton below the ice remained the same throughout the year. Furthermore, the stability of the water column was more important for the development of the phytoplankton assemblage below the ice than was the water temperature and light intensity. Small flagellates and diatoms were abundant among the algae in the upper layers of the lake's water column. Lake Teletskoye is similar in its phytoplankton composition and algal distribution throughout the water column to large, deep temperate lakes and Arctic or Antarctic lakes covered temporally or perennially by ice. [source]


First assessment of methane and carbon dioxide emissions from shallow and deep zones of boreal reservoirs upon ice break-up

LAKES & RESERVOIRS: RESEARCH AND MANAGEMENT, Issue 1 2006
Éric Duchemin
Abstract Most studies dealing with greenhouse gas (GHG) emissions from large boreal reservoirs were conducted during the ice-free period. In this paper, the potential methane (CH4) and carbon dioxide emissions are estimated for two hydroelectric reservoirs, as well as for a small experimental reservoir from boreal latitudes (northern Quebec, Canada) at the ice break-up event through diffusion (diffusive fluxes) and release of bubbles (bubbling fluxes). The results of this preliminary study suggest that the winter diffusive fluxes at the air,water interface of the sampled reservoirs represent < 7% of their cumulative carbon emissions during the ice-free period. Furthermore, the release upon ice-break of CH4 bubbles accumulated under the ice cover during the winter could represent 2% of the summer carbon emissions from hydroelectric reservoirs in northern Quebec. The results presented herein suggest that the GHG emissions upon ice break-up from the boreal reservoirs investigated are a small, but non-negligible, component of their annual GHG emissions. [source]


Seasonal and diel changes of dissolved oxygen in a hypertrophic prairie lake

LAKES & RESERVOIRS: RESEARCH AND MANAGEMENT, Issue 3 2005
Richard D. Robarts
Abstract Humboldt Lake, a hypertrophic prairie lake typical of many found on the Great Plains of North America, is usually ice-covered from early November to about mid-May. The lake is an important recreational fishery, now mainly stocked with walleye. It has a high potential risk of experiencing fish kills because of the very large cyanobacterial blooms that develop in it, the high rates of algal and bacterial production and the high concentrations of ammonia (NH3 -N) and dissolved organic matter. Following the collapse of cyanobacterial blooms, shallow prairie lakes are known to undergo periods of anoxia that can lead to summer fish kills. In some of the lakes, anoxia forms during the long period of ice cover, causing winter fish kills. Two years of seasonal and diel data (total phosphorus, dissolved oxygen (DO), NH3 -N and chlorophyll- a concentrations, and bacterial production) were analysed in this study to assess why significant fish kills did not occur during this period or during the , 30 years of records from Saskatchewan Environment. Humboldt Lake did not become anaerobic, either following the collapse of the cyanobacterial bloom or under ice cover, indicating that the oxygen (O2) influx (strong mixing) and production processes were greater than the microbial and chemical O2 demands, both over seasonal and diel time scales. Several published risk threshold criteria to predict the probability of summer and/or winter fish kills were applied in this study. The threshold criteria of maximum summer chlorophyll and maximum winter NH3 -N concentrations indicated that a summer fish kill was unlikely to occur in this hypertrophic prairie lake, provided its water quality remained similar to that during this study. Similarly, the threshold criteria of initial DO storage before ice cover and the rate of O2 depletion under ice cover also indicated a winter fish kill was unlikely. However, recent development in the watershed might have resulted in significant water quality deterioration and the winter fish kill that occurred in 2005. [source]


Comparative phylogeography of five avian species: implications for Pleistocene evolutionary history in the Qinghai-Tibetan plateau

MOLECULAR ECOLOGY, Issue 2 2010
Y. QU
Abstract Pleistocene climate fluctuations have shaped the patterns of genetic diversity observed in extant species. In contrast to Europe and North America where the effects of recent glacial cycles on genetic diversity have been well studied, the genetic legacy of the Pleistocene for the Qinghai-Tibetan (Tibetan) plateau, a region where glaciation was not synchronous with the North Hemisphere ice sheet maxima, remains poorly understood. Here, we compared the phylogeographical patterns of five avian species on the Qinghai-Tibetan plateau by three mitochondrial DNA fragments: the Tibetan snow finch (Montifringilla adamsi), the Blanford's snow finch (Pyrgilauda blanfordi), the horned lark (Eremophila alpestris), the twite (Carduelis flavirostris) and the black redstart (Phoenicurus ochruros). Our results revealed the three species mostly distributed on the platform region of the plateau that experienced population expansion following the retreat of the extensive glaciation period (0.5,0.175 Ma). These results are at odds with the results from avian species of Europe and North America, where population expansions occurred after Last Glacial Maximum (LGM, 0.023,0.018 Ma). A single refugium was identified in a restricted semi-continuous area around the eastern margin of the plateau, instead of multiple independent refugia for European and North American species. For the other two species distributed on the edges of the plateau (the twite and black redstart), populations were maintained at stable levels. Edge areas are located on the eastern margin, which might have had little or no ice cover during the glaciation period. Thus, milder climate may have mitigated demographic stresses for edge species relative to the extremes experienced by platform counterparts, the present-day ranges of which were heavily ice covered during the glaciation period. Finally, various behavioural and ecological characteristics, including dispersal capacities, habitat preference and altitude specificity along with evolutionary history might have helped to shape different phylogeographical structures appearing in these five species. [source]


The genus Leptophytum (Melobesioideae, Corallinales, Rhodophyta) in NW Spitsbergen

NORDIC JOURNAL OF BOTANY, Issue 4 2004
Athanasios Athanasiadis
Three species of the genus Leptophytum, viz. the generitype L. laeve, L. foecundum and the new Arctic endemic L. jenneborgii nov. sp. are described from localities in NW Spitsbergen. A fourth species, related to L. laeve, may also be present and its status requires further comparative studies with Lithothamnion tenue described from western Greenland. Leptophytum jenneborgii is restricted to sublittoral sites around Vasahalvøya, between 8 and 30 m depth growing on hard substrates (usually on Lithothamnion glaciale) and forming encrusting to foliose thalli up to 10 cm in diameter. New lamellae develop in an unattached-superimposed pattern, overgrowing the parent thallus, so that individuals can reach at least 1.5 cm in thickness. Thallus organization is dorsiventral, with a noncoaxial hypothallium (producing rare patches of coaxial cells) and an ascending perithallium with short subepithallial and flattened epithallial cells. Multiporate conceptacles have convex or flattened roof and develop specialized (thinner-wider) pore cells lining the canals. This character combination supports a position in the genus Leptophytum, as recently emended by Athanasiadis & Adey (2006), and simultaneously distinguishes L. jenneborgii from its Arctic and North Atlantic congeners. Like Leptophytum arcticum nov. comb., that is only known from Uddebay on the east coast of Novaja Zemlya, L. jenneborgii shows a restricted distribution on the presumed north periphery of maximum ice cover during the latest glaciation. It is suggested that these two species represent the first evidence of algal glacial survivals in this part of the Arctic. [source]


A historical perspective of the genus Mytilus (Bivalvia: Mollusca) in New Zealand: multivariate morphometric analyses of fossil, midden and contemporary blue mussels

BIOLOGICAL JOURNAL OF THE LINNEAN SOCIETY, Issue 3 2004
JONATHAN P. A. GARDNER
The taxonomic status of smooth shelled blue mussels of the genus Mytilus has received considerable attention in the last 25 years. Despite this, the situation in the southern hemisphere remains uncertain and is in need of clarification. Recent work suggests that contemporary New Zealand mussels from two cool/cold temperate locations are M. galloprovincialis. However, the distribution of Mytilus in New Zealand ranges from 35 ° to 52 ° south (, 1800 km), meaning that large areas of the subtropical/warm temperate north and the subantarctic south remain unsampled, an important consideration when species of this genus exhibit pronounced macrogeographical differences in their distributions which are associated with environmental variables such as water temperature, salinity, wave action and ice cover. This study employed multivariate morphometric analyses of one fossil, 83 valves from middens, and 92 contemporary valves from sites spanning the distributional range of blue mussels to determine a historical and contemporary perspective of the taxonomic status of Mytilus in New Zealand. The findings indicated that all fossil and midden mussels are best regarded as M. galloprovincialis and confirmed that contemporary mussels, with one possible regional exception, are also best regarded as M. galloprovincialis. Contemporary mussels from the Bay of Islands (warm temperate/subtropical) exhibited much greater affinity to M. edulis than they did to M. galloprovincialis, indicating that mussels from this area require detailed genetic examination to determine their taxonomic status. The analyses revealed a significant difference between the fossil/midden mussels and the contemporary mussels, consistent with levels of present day differentiation among intraspecific populations and not thought to reflect any substantive temporal change between mussels of the two groups. The continuous distribution of M. galloprovincialis in New Zealand from the warm north to the subantarctic south indicates that the physiology of this species is adapted to a wide range of water temperature conditions. Therefore, the distribution of this species on a worldwide scale is unlikely to be restricted by its adaptation to warm water alone, as has previously been widely assumed. © 2004 The Linnean Society of London, Biological Journal of the Linnean Society, 2004, 82, 329,344. [source]


Environmental constraints on life histories in Antarctic ecosystems: tempos, timings and predictability

BIOLOGICAL REVIEWS, Issue 1 2006
Lloyd S. Peck
ABSTRACT Knowledge of Antarctic biotas and environments has increased dramatically in recent years. There has also been a rapid increase in the use of novel technologies. Despite this, some fundamental aspects of environmental control that structure physiological, ecological and life-history traits in Antarctic organisms have received little attention. Possibly the most important of these is the timing and availability of resources, and the way in which this dictates the tempo or pace of life. The clearest view of this effect comes from comparisons of species living in different habitats. Here, we (i) show that the timing and extent of resource availability, from nutrients to colonisable space, differ across Antarctic marine, intertidal and terrestrial habitats, and (ii) illustrate that these differences affect the rate at which organisms function. Consequently, there are many dramatic biological differences between organisms that live as little as 10 m apart, but have gaping voids between them ecologically. Identifying the effects of environmental timing and predictability requires detailed analysis in a wide context, where Antarctic terrestrial and marine ecosystems are at one extreme of the continuum of available environments for many characteristics including temperature, ice cover and seasonality. Anthropocentrically, Antarctica is harsh and as might be expected terrestrial animal and plant diversity and biomass are restricted. By contrast, Antarctic marine biotas are rich and diverse, and several phyla are represented at levels greater than global averages. There has been much debate on the relative importance of various physical factors that structure the characteristics of Antarctic biotas. This is especially so for temperature and seasonality, and their effects on physiology, life history and biodiversity. More recently, habitat age and persistence through previous ice maxima have been identified as key factors dictating biodiversity and endemism. Modern molecular methods have also recently been incorporated into many traditional areas of polar biology. Environmental predictability dictates many of the biological characters seen in all of these areas of Antarctic research. [source]


Rapid Holocene climate changes in the North Atlantic: evidence from lake sediments from the Faroe Islands

BOREAS, Issue 1 2006
CAMILLA S. ANDRESEN
Holocene records from two lakes on the Faroe Islands were investigated to determine regional climatic variability: the fairly wind-exposed Lake Starvatn on Streymoy and the more sheltered Lake Lykkjuvötn on Sandoy. Sediment cores were analysed for content of biogenic silica, organic carbon and clastic material, and magnetic susceptibility. In addition, a new qualitative proxy for past lake ice cover and wind activity was developed using the flux of clastic grains that are larger than 255 ,m. Both long-term and short-term climatic developments were similar between the two lakes, suggesting a response to a regional climate signal. The long-term climate development is characterized by early Holocene rapid warming followed by Holocene climatic optimum conditions ending around 8300 cal. yr BP. A more open landscape as evidenced from increased sand grain influx in the period 8300,7200 cal. yr BP could reflect the aftermath of the 8200 cal. yr BP event, although the event itself is not recognized in either of the two lake records. From around 7200 cal. yr BP the mid-Holocene climate deterioration is observed and from 4200 cal. yr BP the climate deteriorated further with increased amplitude of centennial cooling episodes. [source]


Late Quaternary development of the southern sector of the Greenland Ice Sheet, with particular reference to the Qassimiut lobe

BOREAS, Issue 4 2004
ANKER WEIDICK
The evolution of the southern Greenland Ice Sheet is interpreted from a synthesis of geological data and palaeoclimatic information provided by the ice-sheet cores. At the Last Glacial Maximum the ice margin would have been at the shelf break and the ice sheet was fringed by shelf ice. Virtually all of the present ice-free land was glaciated. The initial ice retreat was controlled by eustatic sea level rise and was mainly by calving. When temperatures increased, melt ablation led to further ice-margin retreat and areas at the outer coast and mountain tops were deglaciated. Retreat was interrupted by a readvance during the Neria stade that may correlate with the Younger Dryas cooling. The abrupt temperature rise at the Younger Dryas,Holocene transition led to a fast retreat of the ice margin, and after ,9 ka BP the ice sheet was smaller than at present. Expansion of the ice cover began in the Late Holocene, with a maximum generally during the Little Ice Age. The greatest changes in ice cover occurred in lowland areas, i.e. in the region of the Qassimiut lobe. The date of the historical maximum advance shows considerable spatial variability and varies between AD 1600 and the present. Local anomalous readvances are seen at possibly 7,8 ka and at c. 2 ka BP. A marked relative sea level rise is seen in the Late Holocene; this is believed to reflect a direct glacio-isostatic response to increasing ice load. [source]