Home About us Contact | |||
IL-8 Promoter (il-8 + promoter)
Selected AbstractsThe p38 mitogen-activated protein kinase regulates interleukin-1,-induced IL-8 expression via an effect on the IL-8 promoter in intestinal epithelial cellsIMMUNOLOGY, Issue 4 2003Kuljit Parhar Summary Several lines of evidence implicate the p38 mitogen-activated protein kinase (p38 MAPK) in the proinflammatory response to bacterial agents and cytokines. Equally, the transcription factor, nuclear factor (NF)-,B, is recognized to be a critical determinant of the inflammatory response in intestinal epithelial cells (IECs). However, the precise inter-relationship between the activation of p38 MAPK and activation of the transcription factor NF-,B in the intestinal epithelial cell (IEC) system, remains unknown. Here we show that interleukin (IL)-1, activates all three MAPKs in Caco-2 cells. The production of IL-8 and monocyte chemotactic protein 1 (MCP-1) was attenuated by 50% when these cells were preincubated with the p38 MAPK inhibitor, SB 203580. Further investigation of the NF-,B signalling system revealed that the inhibitory effect was independent of the phosphorylation and degradation of I,B,, the binding partner of NF-,B. This effect was also independent of the DNA binding of the p65 Rel A subunit, as well as transactivation, determined by an NF-,B luciferase construct, using both SB 203580 and dominant,negative p38 MAPK. Evaluation of IL-8 and MCP-1 RNA messages by reverse transcription,polymerase chain reaction (RT,PCR) revealed that the inhibitory effect of SB 203580 was associated with a reduction in this parameter. Using an IL-8,luciferase promoter construct, an effect of p38 upon its activation by both pharmacological and dominant,negative p38 construct co-transfection was demonstrated. It is concluded that p38 MAPK influences the expression of chemokines in intestinal epithelial cells, through an effect upon the activation of the chemokine promoter, and does not directly involve the activation of the transcription factor NF-,B. [source] Osteoblast-Derived TGF-,1 Stimulates IL-8 Release Through AP-1 and NF-,B in Human Cancer Cells,JOURNAL OF BONE AND MINERAL RESEARCH, Issue 6 2008Yi-Chin Fong Abstract Introduction: The bone marrow microenvironment is further enriched by growth factors released during osteoclastic bone resorption. It has been reported that the chemokine interleukin (IL)-8 is a potent and direct activator of osteoclastic differentiation and bone resorption. However, the effect of bone-derived growth factors on the IL-8 production in human cancer cells and the promotion of osteoclastogenesis are largely unknown. The aim of this study was to investigate whether osteoblast-derived TGF-,1 is associated with osteolytic bone diseases. Materials and Methods: IL-8 mRNA levels were measured using RT-PCR analysis. MAPK phosphorylation was examined using the Western blot method. siRNA was used to inhibit the expression of TGF-,1, BMP-2, and IGF-1. DNA affinity protein-binding assay and chromatin immunoprecipitation assays were used to study in vitro and in vivo binding of c- fos, c- jun, p65, and p50 to the IL-8 promoter. A transient transfection protocol was used to examine IL-8, NF-,B, and activator protein (AP)-1 activity. Results: Osteoblast conditioned medium (OBCM) induced activation of IL-8, AP-1, and NF-,B promoter in human cancer cells. Osteoblasts were transfected with TGF-,1, BMP-2, or IGF-1 small interfering RNA, and the medium was collected after 48 h. TGF-,1 but not BMP-2 or IGF-1 siRNA inhibited OBCM-induced IL-8 release in human cancer cells. In addition, TGF-,1 also directly induced IL-8 release in human cancer cells. Activation of AP-1 and NF-,B DNA-protein binding and MAPKs after TGF-,1 treatment was shown, and TGF-,1,induced IL-8 promoter activity was inhibited by the specific inhibitors of MAPK cascades. Conclusions: In this study, we provide evidence to show that the osteoblasts release growth factors, including TGF-,1, BMP-2, and IGF-1. TGF-,1 is the major contributor to the activation of extracellular signal-related kinase (ERK), p38, and c-Jun N-terminal kinase (JNK), leading to the activation of AP-1 and NF-,B on the IL-8 promoter and initiation of IL-8 mRNA and protein release, thereby promoting osteoclastogenesis. [source] Epstein-Barr Virus (EBV) Latent Membrane Protein 1 Induces Interleukin-8 through the Nuclear Factor-,B Signaling Pathway in EBV-Infected Nasopharyngeal Carcinoma Cell LineTHE LARYNGOSCOPE, Issue 5 2004Qingchun Ren MD Abstract Background/Objectives: Nasopharyngeal carcinoma (NPC) is a highly invasive and metastatic malignant tumor and is associated with Epstein-Barr virus (EBV) infection that exhibits type II latency. Angiogenesis is essential for tumor growth, invasion, and metastasis. Our previous studies have indicated that interleukin (IL)-8 was over-expressed in many NPC tissues and was found to be significantly correlated with angiogenesis by immunohistochemistry. Study Design: In vitro design. Methods: The influence of the EBV genome for IL-8 gene expression was studied using the EBV,genome-positive and -negative epithelial/NPC hybrid cell line NPC-KT. The EBV-positive and -negative clones were selected by polymerase chain reaction and in situ hybridization. Results: EBV-positive clones expressed abundant IL-8 mRNA compared with EBV-negative clones. This result indicated that over-expression of IL-8 depended on the presence of EBV genomes in NPC-KT cells. Two encoded genes, latent membrane protein (LMP)1 and EBV-encoded small RNAs (EBERs), expressed in NPC were transfected in EBV-negative NPC-KT cells. LMP1 transactivated the IL-8 promoter, whereas EBERs did not. Moreover, the nuclear factor (NF)- ,B binding site in the IL-8 promoter was essential for the response to LMP1, and the activator protein (AP)-1 binding site played only a partial role. Conclusions: LMP1 induces IL-8 mainly through the activation of NF-,B and partly through AP-1 in NPC model cell lines, NPC-KT, and this suggests that LMP1 plays an important role in the angiogenesis of NPC. [source] Suppression of lipopolysaccharide- and tumour necrosis factor-,-induced interleukin (IL)-8 expression by glucocorticoids involves changes in IL-8 promoter acetylationCLINICAL & EXPERIMENTAL IMMUNOLOGY, Issue 1 2007L. G. Tsaprouni Summary There is accumulating evidence that the transrepressional effect of glucocorticoids in down-regulating proinflammatory gene expression might be regulated by an action on histone acetylation. To investigate this, we studied the effect of two glucocorticoids (dexamethasone and triamcinolone acetonide) on reducing lipopolysaccharide (LPS)- and tumour necrosis factor (TNF)-,-induced interleukin (IL)-8 release in a monocytic cell line and two lymphocytic cell lines (HUT-78 and Jurkat). The effect of the histone deacetylase inhibitor trichostatin A (TSA) on LPS- and TNF-,-induced IL-8 release and its repression by glucocorticoids was also examined. LPS and TNF-, induced IL-8 release in all three cell lines and this induction was inhibited by both dexamethasone and triamcinolone. Pretreatment of cells with TSA enhanced basal and LPS- and TNF,-stimulated IL-8 release in all three cell lines. TSA also attenuated the inhibitory effect of glucocorticoids on stimulated IL-8 release. Chromatin immunoprecipitation assays confirmed that LPS and TNF-, enhanced histone acetylation at the IL-8 promoter and that this was inhibited by triamcinolone in all three cell types. Changes in histone acetylation at the IL-8 are important in its regulation by proinflammatory and anti-inflammatory agents, and modulation of this activity may have therapeutic potential in inflammatory conditions. [source] |