Home About us Contact | |||
IL-6 Stimulation (il-6 + stimulation)
Selected AbstractsInterleukin-6 Induction by Helicobacter pylori in Human Macrophages is Dependent on PhagocytosisHELICOBACTER, Issue 3 2006Stefan Odenbreit Abstract Background:, The colonization of the gastric mucosa with Helicobacter pylori is accompanied by elevated levels of proinflammatory cytokines, such as interleukin-1 (IL-1), IL-6, and IL-8. The aim of our study was to determine the mechanisms of IL-6 stimulation in phagocytes upon H. pylori infection. Materials and Methods:, We investigated the secretion of IL-6 by different professional phagocytes from murine and human origin, including granulocyte- and monocyte-like cells and macrophages derived from human peripheral blood monocytes (PBMCs). The influence of viability, phagocytosis, and the impact of different subcellular fractions of H. pylori bacteria were evaluated. Results:, IL-6 levels induced by H. pylori were low in cell lines derived from murine and human monocytes and in human granulocyte-like cells. By contrast, macrophages derived from human PBMCs were highly responsive to both H. pylori and Escherichia coli. IL-6 induction was blocked by inhibition of actin-dependent processes prior to infection with H. pylori, but not with E. coli or E. coli lipopolysaccharide (LPS). Using cell fractionation, the most activity was found in the H. pylori membrane. H. pylori LPS exhibited a 103 - to 104 -fold lower biologic activity than E. coli LPS, suggesting a minor role for toll-like receptor 4 (TLR4)-mediated signalling from the exterior. Conclusions:, From these data, we conclude that macrophages may be a major source of IL-6 in the gastric mucosa upon H. pylori infection. The IL-6 induction by H. pylori in these cells is a multifactorial process, which requires the uptake and presumably degradation of H. pylori bacteria. [source] IL-6, but not IL-4, stimulates chemokinesis and TNF stimulates chemotaxis of tissue mast cells: involvement of both mitogen-activated protein kinases and phosphatidylinositol 3-kinase signalling pathwaysAPMIS, Issue 8 2009ANNA MISIAK-T, OCZEK Misiak-T,oczek A, Brzezi,ska-B,aszczyk E. IL-6, but not IL-4, stimulates chemokinesis and TNF stimulates chemotaxis of tissue mast cells: Involvement of both mitogen-activated protein kinases and phosphatidylinositol 3-kinase signalling pathways. APMIS 2009; 117: 558,67. An increase in the number of mast cells within tissues is observed in many pathophysiological conditions. Current data indicate that migration of mature mast cells might be one of the key mechanisms responsible for rapid local accumulation of these cells. Considering that interleukin (IL)-6 and IL-4, as well as tumour necrosis factor (TNF), influence mast cell activity in various ways, the purpose of the current study was to examine whether these cytokines function as rat peritoneal mast cell chemoattractants. We showed that IL-4, in the concentration range from 10,6 to 10,3 ng/ml, did not induce a mast cell migratory response, even in the presence of laminin and fibronectin. Under the same experimental conditions, mast cells were shown to migrate in response to IL-6 stimulation in the presence of laminin. The optimal concentration of IL-6 for maximal migration of mast cells was 10,4 ng/ml (i.e. ,5 nM). In comparison, the optimal concentration of TNF for maximal migration of mast cells was 5 × 10,5 ng/ml (i.e. ,3 fM). IL-6-stimulated mast cell migration was the result of chemokinesis, whereas TNF-induced migration was the result of chemotaxis. Mast cell migratory responses to IL-6 and TNF were entirely blocked by specific anti-IL-6R and anti-TNFR1 antibodies. We also documented that the migration response of mast cells to stimulation with IL-6 and TNF was mediated through signal transduction pathways involving mitogen-activated protein kinases and phosphatidylinositol 3-kinase. Taken together, our results indicate that IL-6, as well as TNF, induces tissue mast cell migration. Thus, these proinflammatory cytokines can be responsible for mast cell accumulation at the site of diverse conditions accompanied by inflammation. [source] Identification of neutrophil gelatinase-associated lipocalin (NGAL) as a discriminatory marker of the hepatocyte-secreted protein response to IL-1,: a proteomic analysisBIOTECHNOLOGY & BIOENGINEERING, Issue 4 2005Arul Jayaraman Abstract The liver is the major source of proteins used throughout the body for various functions. Upon injury or infection, an acute phase response (APR) is initiated in the liver that is primarily mediated by inflammatory cytokines such as interleukin-1, (IL-1,) and interleukin-6. Among others, the APR is characterized by an altered protein synthetic profile. We used two-dimensional gel electrophoresis to study the dynamics of changes in protein synthesis in hepatocytes exposed to these inflammatory cytokines. Protein profiles were quantified using image analysis and further analyzed using multivariate statistical methods. Our results indicate that IL-1, and IL-6 each induces secreted protein responses with distinct dynamics and dose-dependence. Parallel stimulation by IL-1, and IL-6 results in a protein pattern indistinguishable from the IL-1, pattern, indicating a dominant effect of IL-1, over IL-6 at the doses tested. Multidimensional scaling (MDS) of correlation distances between protein secretion levels revealed two protein pairs that are robustly co-secreted across the various cytokine stimulation conditions, suggesting shared regulatory pathways. Finally, we also used multivariate alternating conditional expectation (MACE) to identify transformation functions that discriminated the cytokine-stimulated and untreated hepatocyte-secreted protein profiles. Our analysis indicates that the expression of neutrophil gelatinase-associated lipocalin (NGAL) was sufficient to discriminate between IL-1, and IL-6 stimulation. The combination of proteomics and multivariate analysis is expected to provide new information on the cellular regulatory networks involved in generating specific cellular responses. © 2005 Wiley Periodicals, Inc. [source] Activation of sphingosine kinase mediates suppressive effect of interleukin-6 on human multiple myeloma cell apoptosisBRITISH JOURNAL OF HAEMATOLOGY, Issue 5 2007Qing-Fang Li Summary Interleukin 6 (IL-6) influences the growth and survival of multiple myeloma (MM) cells via the activation of multiple signalling cascades. Although sphingosine kinase (SPHK) signalling is known to play important roles in the regulation of cell proliferation and apoptosis, the role of SPHK activation in IL-6 signalling and in the pathology of MM remains unclear. This study found that IL-6 activated SPHK in MM cells, which mediates the suppressive effects of IL-6 on MM cell apoptosis. Both MM cell lines and primary MM cells constitutively expressed SPHK, and treatment of MM cells with IL-6 resulted in activation of SPHK in a concentration-dependent manner. Specific inhibitors of the phosphatidylinositol-3 kinase and extracellular signal-regulated kinase/mitogen-activated protein kinase pathways blocked the IL-6-induced activation of SPHK. It was further demonstrated that IL-6-induced activation of SPHK inhibited dexamethasone-induced apoptosis of MM cells. IL-6 stimulation or retroviral-mediated overexpression of SPHK1 in MM cells resulted in increased intracellular SPHK activity and upregulation of myeloid cell leukaemia-1 (Mcl-1), leading to increased cell proliferation and survival. Conversely, inhibition of SPHK1 by small interfering RNA reduced IL-6-induced upregulation of Mcl-1 and blocked the suppressive effect of IL-6 on MM cell apoptosis. Taken together, these results delineate a key role for SPHK activation in IL-6-induced proliferation and survival of MM cells, and suggest that SPHK may be a potential new therapeutic target in MM. [source] An inhibitor of interleukin-6 trans-signalling, sgp130, contributes to impaired acute phase response in human chronic liver diseaseCLINICAL & EXPERIMENTAL IMMUNOLOGY, Issue 3 2009A. Lemmers Summary In chronic liver disease, high circulating interleukin (IL)-6 contrasts with a poor acute phase response. We evaluated the impact of liver and circulating IL-6-receptor (IL-6R) forms on IL-6 bioactivity in chronic liver disease. IL-6, soluble IL-6-receptor and sgp130 levels were assayed in plasma from 45 patients with alcoholic liver disease, 84 with hepatitis C virus (HCV) infection undergoing transjugular liver biopsies and 15 healthy subjects. IL-6R mRNA was quantified on liver extracts from 54 patients with alcoholic liver disease with or without cirrhosis and 18 HCV-infected patients. The effect of gp130,Fc on fibrinogen secretion induced by IL-6 trans-signalling was evaluated on hepatocyte cultures. Levels of plasma IL-6 and sgp130, but not soluble IL-6R, increased with the stage of chronic liver disease, and correlated significantly with disease severity. Alcoholic liver disease patients had higher plasma IL-6 levels than hepatitis C, but lower liver IL-6R expression. In alcoholic and HCV-related liver diseases, liver IL-6R expression decreased with advanced fibrosis stage. In vitro, on hepatocytes, gp130,Fc blunted the acute phase response while soluble IL-6R enhanced IL-6 stimulation. In advanced chronic liver disease, high plasma IL-6 is associated with low liver IL-6R expression. This situation enables high plasma sgp130 to act as a major negative regulator of liver IL-6 trans-signalling, as demonstrated functionally here on hepatocytes. This might explain the poor acute phase response induced by IL-6 in chronic liver disease. [source] |