Home About us Contact | |||
IL-6 Release (il-6 + release)
Selected AbstractsEarly Renal Ischemia-Reperfusion Injury in Humans Is Dominated by IL-6 Release from the AllograftAMERICAN JOURNAL OF TRANSPLANTATION, Issue 7 2009D. K. De Vries The pathophysiology of ischemia/reperfusion (I/R) injury is complex, and current knowledge of I/R injury in humans is incomplete. In the present study, human living-donor kidney transplantation was used as a highly reproducible model to systematically study various processes potentially involved in early I/R injury. Unique, direct measurements of arteriovenous concentration differences over the kidney revealed massive release of interleukin (IL)-6 in the first 30 minutes of graft reperfusion and a modest release of IL-8. Among the assessed markers of oxidative and nitrosative stress, only 15(S)-8- iso -PGF2, was released. When assessing cell activation, release of prothrombin factor 1 + 2 indicated thrombocyte activation, whereas there was no release of markers for endothelial activation or neutrophil activation. Common complement activation complex sC5b-9 was not released into the bloodstream, but was released into urine rapidly after reperfusion. To investigate whether IL-6 plays a modulating role in I/R injury, a mouse experiment of renal I/R injury was performed. Neutralizing anti-IL-6 antibody treatment considerably worsened kidney function. In conclusion, this study shows that renal I/R in humans is dominated by local IL-6 release. Neutralization of IL-6 in mice resulted in a significant aggravation of renal I/R injury. [source] Association between fatigue and failure to preserve cerebral energy turnover during prolonged exerciseACTA PHYSIOLOGICA, Issue 1 2003L. Nybo Abstract Aim: This study evaluated if the fatigue and apathy arising during exercise with hypoglycaemia could relate to a lowering of the cerebral metabolic rates of glucose and oxygen. Methods and results: Six males completed 3 h of cycling with or without glucose supplementation in random order. Cerebral blood flow, metabolism and interleukin-6 (IL-6) release were evaluated with the Kety,Schmidt technique. Blood glucose was maintained during the glucose trial, while it decreased from 5.2 ± 0.1 to 2.9 ± 0.3 mmol L,1 (mean ± SE) after 180 min of exercise in the placebo trial with a concomitant increase in perceived exertion (P < 0.05). During hypoglycaemia, the cerebral glucose uptake was reduced from 0.34 ± 0.05 to 0.28 ± 0.04 ,mol g,1 min,1, while the cerebral uptake of , -hydroxybutyrate increased to 5 ± 1 pmol g,1 min,1 (P < 0.05). The reduced glucose uptake was accompanied by a lowering of the cerebral metabolic rate of oxygen from 1.84 ± 0.19 mmol g,1 min,1 during exercise with glucose supplementation to 1.60 ± 0.16 mmol g,1 min,1 during hypoglycaemia (P < 0.05). In addition, the cerebral IL-6 release was reduced from 0.4 ± 0.1 to 0.0 ± 0.1 pg g,1 min,1 (P < 0.05). Conclusions: Exercise-induced hypoglycaemia limits the cerebral uptake of glucose, exacerbates exercise, reduces the cerebral metabolic rate of oxygen and attenuates the release of IL-6 from the brain. [source] P2Y1 receptor signaling enhances neuroprotection by astrocytes against oxidative stress via IL-6 release in hippocampal culturesGLIA, Issue 3 2009Takumi Fujita Abstract Cell survival is a critical issue in the onset and progression of neurodegenerative diseases and following pathological events including ischemia and traumatic brain injury. Oxidative stress is the main cause of cell damage in such pathological conditions. Here, we report that adenosine 5,-triphosphate (ATP) protects hippocampal astrocytes from hydrogen peroxide (H2O2)-evoked oxidative injury in astrocyte monocultures. The effect of ATP was prevented by a selective antagonist of or siRNAs against P2Y1R. Interestingly, in astrocyte-neuron cocultures, ATP also produced neuroprotective effects against H2O2 -evoked neuronal cell death, whereas ATP did not produce any neuroprotective effects in monocultures. The ATP-induced neuroprotection in cocultures was completely inhibited by silencing of astrocytic P2Y1R expression, indicating that ATP acts on astrocytes and enhances their neuroprotective functions by activating P2Y1R. Furthermore, this neuroprotective effect was mimicked by applying conditioned medium from astrocytes that had been stimulated by ATP, implying an involvement of diffusible factors from astrocytes. We found that, in both purified astrocyte cultures and astrocyte-neuronal cocultures, ATP and the P2Y1R agonist 2-methylthioadenosine 5, diphosphate (2MeSADP) induced the release of interleukin-6 (IL-6), but this did not occur in neuron monocultures. Moreover, exogenous IL-6 produced a neuroprotective effect, and the neuroprotection induced by P2Y1R-stimulated astrocytes was prevented in the presence of an anti-IL-6 antibody. Taken together, these results suggest that P2Y1R-stimulated astrocytes protect against neuronal damage induced by oxidative stress, and that IL-6 is a crucial signaling molecule released from astrocytes. Thus, activation of P2Y1R in astrocytes may rescue neurons from secondary cell death under pathological conditions. © 2008 Wiley-Liss, Inc. [source] Histamine induces Toll-like receptor 2 and 4 expression in endothelial cells and enhances sensitivity to Gram-positive and Gram-negative bacterial cell wall componentsIMMUNOLOGY, Issue 2 2004Jaya Talreja Summary Histamine is a major inflammatory molecule released from the mast cell, and is known to activate endothelial cells. However, its ability to modulate endothelial responses to bacterial products has not been evaluated. In this study we determined the ability of histamine to modulate inflammatory responses of endothelial cells to Gram-negative and Gram-positive bacterial cell wall components and assessed the role of Toll-like receptors (TLR) 2 and 4 in the co-operation between histamine and bacterial pathogens. Human umbilical vein endothelial cells (HUVEC) were incubated with lipopolysaccharide (LPS), lipoteichoic acid (LTA), or peptidoglycan (PGN) in the presence or absence of histamine, and the expression and release of interleukin-6 (IL-6), and NF-,B translocation were determined. The effect of histamine on the expression of mRNA and proteins for TLR2 and TLR4 was also evaluated. Incubation of HUVEC with LPS, LTA and PGN resulted in marked enhancement of IL-6 mRNA expression and IL-6 secretion. Histamine alone markedly enhanced IL-6 mRNA expression in HUVEC, but it did not stimulate proportional IL-6 release. When HUVEC were incubated with LPS, LTA, or PGN in the presence of histamine marked amplification of both IL-6 production and mRNA expression was noted. HUVEC constitutively expressed TLR2 and TLR4 mRNA and proteins, and these were further enhanced by histamine. The expression of mRNAs encoding MD-2 and MyD88, the accessory molecules associated with TLR signalling, were unchanged by histamine treatment. These results demonstrate that histamine up-regulates the expression of TLR2 and TLR4 and amplifies endothelial cell inflammatory responses to Gram-negative and Gram-positive bacterial components. [source] cAMP activation by PACAP/VIP stimulates IL-6 release and inhibits osteoblastic differentiation through VPAC2 receptor in osteoblastic MC3T3 cellsJOURNAL OF CELLULAR PHYSIOLOGY, Issue 1 2009Azusa Nagata The neuropeptide pituitary adenylate cyclase-activating polypeptide (PACAP), a member of the glucagon/vasoactive intestinal peptide (VIP) superfamily, stimulates cyclic AMP accumulation initiating a variety of biological processes such as: neurotropic actions, immune and pituitary function, learning and memory, catecholamine biosynthesis and regulation of cardiopulmonary function. Both osteoclasts and osteoblasts have been shown to express receptors for PACAP/VIP implicated in their role in bone metabolism. To further understand the role of PACAP/VIP family in controlling bone metabolism, we investigated differentiation model of MC3T3-E1 cells, an osteoblastic cell line derived from mouse calvaria. Quantitative RT-PCR analysis demonstrated that MC3T3-E1 cells expressed only VPAC2 receptor and its expression was upregulated during osteoblastic differentiation, whereas VPAC1 and PAC1 receptors were not expressed. Consistent with expression of receptor subtype, both PACAP and VIP stimulate cAMP accumulation in a time- and dose-dependent manner with the similar potency in undifferentiated and differentiated cells, while Maxadilan, a specific agonist for PAC1-R, did not. Furthermore, downregulation of VPAC2-R by siRNA completely blocked cAMP response mediated by PACAP and VIP. Importantly, PACAP/VIP as well as forskolin markedly suppressed the induction of alkaline phosphatase mRNA upon differentiation and the pretreatment with 2,,5,-dideoxyadenosine, a cAMP inhibitor, restored its inhibitory effect of PACAP. We also found that PACAP and VIP stimulated IL-6 release, a stimulator of bone resorption, and VPAC2-R silencing inhibited IL-6 production. Thus, PACAP/VIP can activate adenylate cyclase response and regulate IL-6 release through VPAC2 receptor with profound functional consequences for the inhibition of osteoblastic differentiation in MC3T3-E1 cells. J. Cell. Physiol. 221: 75,83, 2009. © 2009 Wiley-Liss, Inc [source] Expression of interleukin-1 receptors and their role in interleukin-1 actions in murine microglial cellsJOURNAL OF NEUROCHEMISTRY, Issue 4 2002Emmanuel Pinteaux Abstract Interleukin (IL)-1 is an important mediator of acute brain injury and inflammation, and has been implicated in chronic neurodegeneration. The main source of IL-1 in the CNS is microglial cells, which have also been suggested as targets for its action. However, no data exist demonstrating expression of IL-1 receptors [IL-1 type-I receptor (IL-1RI), IL-1 type-II receptor (IL-1RII) and IL-1 receptor accessory protein (IL-1RAcP)] on microglia. In the present study we investigated whether microglia express IL-1 receptors and whether they present target or modulatory properties for IL-1 actions. RT,PCR analysis demonstrated lower expression of IL-1RI and higher expression of IL-1RII mRNAs in mouse microglial cultures compared with mixed glial or pure astrocyte cultures. Bacterial lipopolysaccharide (LPS) caused increased expression of IL-1RI, IL-1RII and IL-1RAcP mRNAs, induced the release of IL-1,, IL-6 and prostaglandin-E2 (PGE2), and activated nuclear factor ,B (NF-,B) and the mitogen-activated protein kinases (MAPKs) p38, and extracellular signal-regulated protein kinase (ERK1/2), but not c-Jun N-terminal kinase (JNK) in microglial cultures. In comparison, IL-1, induced the release of PGE2, IL-6 and activated NF-,B, p38, JNK and ERK1/2 in mixed glial cultures, but failed to induce any of these responses in microglial cell cultures. IL-1, also failed to affect LPS-primed microglial cells. Interestingly, a neutralizing antibody to IL-1RII significantly increased the concentration of IL-1, in the medium of LPS-treated microglia and exacerbated the IL-1,-induced IL-6 release in mixed glia, providing the first evidence that microglial IL-1RII regulates IL-1, actions by binding excess levels of this cytokine during brain inflammation. [source] Titanium particles induce the immediate early stress responsive chemokines IL-8 and MCP-1 in osteoblastsJOURNAL OF ORTHOPAEDIC RESEARCH, Issue 3 2002Elizabeth A. Fritz Abstract Exposure of human osteoblasts to ultrafine titanium (Ti) particles has been shown to alter osteoblast gene expression. We previously reported that Ti particles can increase IL-6 release and suppress the gene expression of procollagens ,1[I] and ,1[III] in human osteoblasts. In this study, we now demonstrate that Ti particles can rapidly induce the chemotactic cytokines interleukin-8 (IL-8) and monocyte chemoattractant protein-1 (MCP-1), two immediate early stress responsive chemokines important for the activation and chemotaxis of neutrophils and macrophages, respectively. In MG-63 osteosarcoma cells and bone marrow derived primary osteoblasts Ti particles selectively increased the steady state levels of IL-8 and MCP-1 mRNA in a time and concentration dependent manner. The increased chemokine mRNA correlated with increased secretion of IL-8 and MCP-1 protein. Actinomycin D, a potent RNA polymerase II inhibitor, blocked the Ti particle induction of IL-8 and MCP-1 mRNA expression, whereas cycloheximide, which inhibits protein synthesis, failed to inhibit chemokine gene expression suggesting Ti particles directly target activation of chemokine gene transcription. Consistent with a transcriptional mechanism not involving new protein synthesis, we demonstrate that Ti particles induce the binding of the p65 and p50 subunits of the latent transcription factor NF-,B to the IL-8 gene promoter. Taken together, these data demonstrate that Ti particles can activate transcription of the stress responsive chemokine genes IL-8 and MCP-1 in human osteoblasts. © 2002 Orthopaedic Research Society. Published by Elsevier Science Ltd. All rights reserved. [source] C5a modulation of interleukin-1, -induced interleukin-6 production by human osteoblast-like cellsJOURNAL OF PERIODONTAL RESEARCH, Issue 3 2000John M. Pobanz Periodontal bone resorption is controlled by osteoblast products, including interleukin (IL)-6, which are stimulated by other cytokines and complement components in the pro-inflammatory milieu. This study demonstrated that human osteoblast-like osteosarcoma cells (MG-63) responded to human recombinant (hr) C5a by releasing significant amounts of the bone-resorbing cytokine IL-6. C5a-induced release of IL-6 was enhanced 330% when cells were exposed to IL-1, prior to C5a challenge at optimal concentrations (1.0 ,g/ml C5a, 0.1 ng/ml IL-1,). Cells simultaneously challenged with these concentrations of C5a and IL-1, produced a 700% increase in IL-6 release relative to cells challenged with IL-1, alone. Incubation of IL-1,-treated cells with anti-human C5a receptor (C5aR) Ab resulted in a 78% suppression of the C5a-induced release of IL-6, but C5aR neutralization did not affect C5a/IL-1, co-stimulation of IL-6. In addition, neither IL-1, nor C5a significantly altered the other's cell-surface receptor relative to binding affinity or density. These results indicate that while MG-63 cells express functional C5aRs, the synergistic effect of C5a and IL-1, on osteoblast IL-6 production is probably controlled by post-receptor signaling events. C5a agonists and antagonist used to alter critical C5a concentrations may present a new point of therapeutic intervention for the treatment of inflammatory bone resorption such as is found in periodontitis. [source] Effects of carprofen (R and S enantiomers and racemate) on the production of IL-1, IL-6 and TNF-, by equine chondrocytes and synoviocytesJOURNAL OF VETERINARY PHARMACOLOGY & THERAPEUTICS, Issue 2 2002S. ARMSTRONG Chondrocytes and synoviocytes harvested from the joints of healthy horses were maintained in tissue culture. Production of the cytokines interleukin-1 (IL-1), interleukin-6 (IL-6) and tumour necrosis factor- , (TNF- ,) in response to lipopolysaccharide (LPS), and the effects of addition of carprofen (racemate and R and S enantiomers) were determined. Lipopolysaccharide failed to stimulate TNF- , activity in both cell types but concentrations of IL-1 and IL-6 were both increased in a concentration and time-related manner. Both carprofen enantiomers and the racemic mixture attenuated the increase in IL-6 induced by LPS in synoviocytes, and S carprofen exerted a similar effect on chondrocytes. Neither enantiomer nor the racemate of carprofen suppressed the increase in IL-1 release produced by LPS in chondrocytes and synoviocytes. An action of carprofen to suppress IL-6 release might contribute to the actions which occur in vivo. [source] Early Renal Ischemia-Reperfusion Injury in Humans Is Dominated by IL-6 Release from the AllograftAMERICAN JOURNAL OF TRANSPLANTATION, Issue 7 2009D. K. De Vries The pathophysiology of ischemia/reperfusion (I/R) injury is complex, and current knowledge of I/R injury in humans is incomplete. In the present study, human living-donor kidney transplantation was used as a highly reproducible model to systematically study various processes potentially involved in early I/R injury. Unique, direct measurements of arteriovenous concentration differences over the kidney revealed massive release of interleukin (IL)-6 in the first 30 minutes of graft reperfusion and a modest release of IL-8. Among the assessed markers of oxidative and nitrosative stress, only 15(S)-8- iso -PGF2, was released. When assessing cell activation, release of prothrombin factor 1 + 2 indicated thrombocyte activation, whereas there was no release of markers for endothelial activation or neutrophil activation. Common complement activation complex sC5b-9 was not released into the bloodstream, but was released into urine rapidly after reperfusion. To investigate whether IL-6 plays a modulating role in I/R injury, a mouse experiment of renal I/R injury was performed. Neutralizing anti-IL-6 antibody treatment considerably worsened kidney function. In conclusion, this study shows that renal I/R in humans is dominated by local IL-6 release. Neutralization of IL-6 in mice resulted in a significant aggravation of renal I/R injury. [source] In vivo effects of interleukin-17 on haematopoietic cells and cytokine release in normal miceCELL PROLIFERATION, Issue 6 2004G. Jov Simultaneously, the release of IL-6, IL-10, IGF-I, IFN-, and NO by bone marrow cells was determined. Results showed that, in bone marrow, IL-17 did not affect granulocyte-macrophage (CFU-GM) progenitors, but induced a persistant increase in the number of morphologically recognizable proliferative granulocytes (PG) up to 48 h after treatment. The number of immature erythroid (BFU-E) progenitors was increased at 48 h, while the number of mature erythroid (CFU-E) progenitors was decreased up to 48 h. In peripheral blood, white blood cells were increased 6 h after treatment, mainly because of the increase in the number of lymphocytes. IL-17 also increased IL-6 release and NO production 6 h after administration. Additional in vitro assessment on bone marrow highly enriched Lin, progenitor cells, demonstrated a slightly enhancing effect of IL-17 on CFU-GM and no influence on BFU-E, suggesting the importance of bone marrow accessory cells and secondary induced cytokines for IL-17 mediated effects on progenitor cells. Taken together, these results demonstrate that in vivo IL-17 affects both granulocytic and erythroid lineages, with more mature haematopoietic progenitors responding first to its action. The opposite effects exerted on PG and CFU-E found at the same time indicate that IL-17, as a component of a regulatory network, is able to intervene in mechanisms that shift haematopoiesis from the erythroid to the granulocytic lineage. [source] |