Home About us Contact | |||
IFN Production (ifn + production)
Kinds of IFN Production Selected AbstractsInfluenza A viruses with truncated NS1 as modified live virus vaccines: Pilot studies of safety and efficacy in horsesEQUINE VETERINARY JOURNAL, Issue 1 2009T. M. Chambers Summary Reasons for performing study: Three previously described NS1 mutant equine influenza viruses encoding carboxyterminally truncated NS1 proteins are impaired in their ability to inhibit type I IFN production in vitro and are replication attenuated, and thus are candidates for use as a modified live influenza virus vaccine in the horse. Hypothesis: One or more of these mutant viruses is safe when administered to horses, and recipient horses when challenged with wild-type influenza have reduced physiological and virological correlates of disease. Methods: Vaccination and challenge studies were done in horses, with measurement of pyrexia, clinical signs, virus shedding and systemic proinflammatory cytokines. Results: Aerosol or intranasal inoculation of horses with the viruses produced no adverse effects. Seronegative horses inoculated with the NS1-73 and NS1-126 viruses, but not the NS1-99 virus, shed detectable virus and generated significant levels of antibodies. Following challenge with wild-type influenza, horses vaccinated with NS1-126 virus did not develop fever (>38.5°C), had significantly fewer clinical signs of illness and significantly reduced quantities of virus excreted for a shorter duration post challenge compared to unvaccinated controls. Mean levels of proinflammatory cytokines IL-1, and IL-6 were significantly higher in control animals, and were positively correlated with peak viral shedding and pyrexia on Day +2 post challenge. Conclusion and clinical relevance: These data suggest that the recombinant NS1 viruses are safe and effective as modified live virus vaccines against equine influenza. This type of reverse genetics-based vaccine can be easily updated by exchanging viral surface antigens to combat the problem of antigenic drift in influenza viruses. [source] Regulation of innate immunity against hepatitis C virus infectionHEPATOLOGY RESEARCH, Issue 2 2008Takeshi Saito Chronic hepatitis C virus (HCV) infection is a global public health problem. HCV infection is treated with type I interferon (IFN), a natural product that is produced by cells during virus infection as a result of innate immune signaling events. The secreted IFN alert the surrounding cells to turn on an "antiviral state" that resists infection. In general, the role of innate immune response is to suppress viral replication and to induce cytokines and other factors that promote adaptive immunity and the resolution of infection. The mechanisms by which the innate immune response and IFN actions limit HCV infection are not well defined, but are likely to involve the function of specific IFN-stimulated genes. HCV also copesintensively with immune responses in order to establish persistent infection. Recent studies reveal that a other viruses use similar tactics to regulate the antiviral innate immune response. In the case of HCV, innate immune signaling is strictly controlled by the viral NS3/4A protease, resulting in the disruption of IFN production. Here, we summarize the current understanding of how HCV evades the innate immune system. [source] Interferons as pathogenic effectors in autoimmunityIMMUNOLOGICAL REVIEWS, Issue 1 2005Roberto Baccala Summary:, Interferons (IFNs) type-1 (IFN ,/,) and type-II (IFN-,) are the most pleiotropic molecules in the intricate cytokine network. This dominance arises from three crucial factors: (i) initiation of IFN-,/, and IFN-, production at the inception of most innate immune responses, which primes for the ensuing adaptive immune responses, primarily through the sine qua non upregulation of major histocompatibility complex and costimulatory molecules; (ii) magnification of their production and signaling by cross-talk between themselves, and synergistic or antagonistic effects on other cytokines; and (iii) direct or indirect initiation of transcription of hundreds of immunologically relevant genes. Considering that aberrant immune responses against self-molecules seem to depend on the same constituents and pathways as those against exogenous antigens, it follows that IFNs are also major effectors in the pathogenesis of autoimmunity. Here, we review the diverse biological effects of IFNs on the immune system, discuss findings pertaining to the nature of exogenous and endogenous stimuli that might induce IFN production through the engagement of Toll-like receptors, and summarize the detrimental and, in some instances, beneficial effects of IFNs in systemic and organ-specific autoimmune diseases. [source] Peripheral blood mononuclear cells proliferation and Th1/Th2 cytokine production in response to streptococcal M protein in psoriatic patientsINTERNATIONAL JOURNAL OF DERMATOLOGY, Issue 5 2006Rolando Pérez-Lorenzo Background, Psoriasis is a chronic skin disease that is probably a T cell-mediated autoimmune condition which is strongly associated with streptococcal throat infections. Although some groups have associated the involved response with different streptococcal antigens, M protein has been described as the major virulence factor of Streptococcus pyogenes. Thus, it is necessary to describe some features of the cellular responses to this streptococcal antigen. Methods, Proliferation and Th1/Th2 cytokine production of peripheral blood mononuclear cells (PBMC) in response to total soluble extracts from type M5 S. pyogenes with (TSE37Sp) and without (M,TSESp) M protein were analyzed in 10 psoriatic patients and 10 healthy controls. Results, PBMC from both patients and controls proliferated to both extracts. Responses to M,TSESp were significantly lower than those to TSE37Sp (P < 0.05). PBMC IL-2 and ,IFN production after TSE37Sp stimulus was much higher than after M,TSESp antigenic stimulation in both groups (P < 0.05). Meanwhile, IL-4 production was quite low in both groups and in response to both extracts. We found a differential production of IL-10 between groups. PBMC from healthy controls responded to TSE37Sp with a much higher production of this cytokine as compared to the responses showed to M,TSESp while the cells from psoriatic patients responded without differences in the production of IL-10. Conclusion, Results obtained suggest an important Th1 response to M protein in psoriatic patients which could be associated with the cellular responses involved in psoriasis, while healthy subjects respond in a probably non-Th2 IL-10 producing regulatory T cells fashion. [source] Statins, inhibitors of 3-hydroxy-3-methylglutaryl-coenzyme A reductase, function as inhibitors of cellular and molecular components involved in type I interferon productionARTHRITIS & RHEUMATISM, Issue 7 2010Hideki Amuro Objective Statins, which are used as cholesterol-lowering agents, have pleiotropic immunomodulatory properties. Although beneficial effects of statins have been reported in autoimmune diseases, the mechanisms of these immunomodulatory effects are still poorly understood. Type I interferons (IFNs) and plasmacytoid dendritic cells (PDCs) represent key molecular and cellular pathogenic components in autoimmune diseases such as systemic lupus erythematosus (SLE). Therefore, PDCs may be a specific target of statins in therapeutic strategies against SLE. This study was undertaken to investigate the immunomodulatory mechanisms of statins that target the IFN response in PDCs. Methods We isolated human blood PDCs by flow cytometry and examined the effects of simvastatin and pitavastatin on PDC activation, IFN, production, and intracellular signaling. Results Statins inhibited IFN, production profoundly and tumor necrosis factor , production modestly in human PDCs in response to Toll-like receptor ligands. The inhibitory effect on IFN, production was reversed by geranylgeranyl pyrophosphate and was mimicked by either geranylgeranyl transferase inhibitor or Rho kinase inhibitor, suggesting that statins exert their inhibitory actions through geranylgeranylated Rho inactivation. Statins inhibited the expression of phosphorylated p38 MAPK and Akt, and the inhibitory effect on the IFN response was through the prevention of nuclear translocation of IFN regulatory factor 7. In addition, statins had an inhibitory effect on both IFN, production by PDCs from SLE patients and SLE serum,induced IFN, production. Conclusion Our findings suggest a specific role of statins in controlling type I IFN production and a therapeutic potential in IFN-related autoimmune diseases such as SLE. [source] Lupus-like disease and high interferon levels corresponding to trisomy of the type I interferon cluster on chromosome 9pARTHRITIS & RHEUMATISM, Issue 5 2006Haoyang Zhuang Objective Systemic lupus erythematosus (SLE) is associated with type I interferons (IFNs) and can be induced by IFN, treatment. This study looked for evidence of autoimmunity in a pedigree consisting of 4 family members with a balanced translocation 9;21 and 2 members with an unbalanced translocation resulting in trisomy of the short (p) arm and part of the long (q) arm of chromosome 9. These latter 2 subjects had 3 copies of the IFN gene cluster. Methods Subjects were evaluated clinically and serologically for autoimmune disease. Expression levels of IFN,4, IFN,, the type I IFN,inducible gene Mx1, the type I IFN receptor, interleukin-6, and tumor necrosis factor , were determined by real-time polymerase chain reaction. Circulating plasmacytoid dendritic cells, the main IFN-producing cells, were quantified by flow cytometry. Results Both subjects with trisomy of chromosome 9p had a lupus-like syndrome with joint manifestations and antinuclear antibodies: one had anti-RNP and antiphospholipid autoantibodies, and the other had anti,Ro 60. The 3 family members with a balanced translocation 9;21 had no clinical or serologic evidence of autoimmunity, similar to that in relatives who were unaffected by the chromosomal translocation. In the 2 subjects with trisomy of 9p, high levels of IFN,/, (comparable with those found in patients with SLE), increased signaling through the IFN receptor (as indicated by high Mx1 expression), and low levels of circulating plasmacytoid dendritic cells (as observed in patients with SLE) were evident. These abnormalities were not seen in individuals with a balanced translocation. Conclusion Trisomy of the type I IFN cluster of chromosome 9p was associated with lupus-like autoimmunity and increased IFN,/, and IFN receptor signaling. The data support the idea that abnormal regulation of type I IFN production is involved in the pathogenesis of SLE. [source] Breastfeeding is associated with the production of type I interferon in infants infected with influenza virusACTA PAEDIATRICA, Issue 10 2010Guillermina A Melendi Abstract Background:, Breast milk-mediated protection against respiratory viruses is well established. However, protective mechanisms are unclear. Type I interferons (IFN) mediate host defence against respiratory viruses, particularly influenza virus. The relationship among type I IFN, respiratory viral infections and breastfeeding has not been explored. Methods:, Type I IFN responses were studied by ELISA and real time PCR in nasal secretions of infants experiencing their first respiratory infection. Modulation of IFN by breastfeeding and other variables affecting severity during viral infection was explored. Results:, One hundred and twenty infants were positive by RT-PCR for influenza virus (n = 24), human metapneumovirus (hMPV) (n = 30) or respiratory syncytial virus (RSV) (n = 66). Type I IFNs were detected more frequently in infants infected with influenza virus than in those infected with RSV or hMPV. Breastfeeding promoted higher rates and levels of type I IFN only in infants infected with influenza virus. No effect on IFN production was observed for age, gender or smoking. Conclusion:, Our study confirms that type I IFN production is detected more frequently in infants infected with influenza virus. Importantly, higher rates and levels of type I IFN in these infants are associated with breastfeeding. These observations suggest that breast milk can protect against respiratory viruses by activating innate antiviral mechanisms in the host. [source] |