Home About us Contact | |||
IDO Expression (ido + expression)
Selected AbstractsFunction of indoleamine 2,3-dioxygenase in corneal allograft rejection and prolongation of allograft survival by over-expressionEUROPEAN JOURNAL OF IMMUNOLOGY, Issue 3 2006Abstract Indoleamine 2,3-dioxygenase (IDO) suppresses T cell responses by its action in catabolising tryptophan. It is important in maintenance of immune privilege in the placenta. We investigated the activity of IDO in the cornea, following corneal transplantation and the effect of IDO over-expression in donor corneal endothelium on the survival of corneal allografts. IDO expression was analysed and functional activity was quantified in normal murine cornea and in corneas following transplantation as allografts. Low levels of IDO, at both mRNA and protein levels, was detected in the normal cornea, up-regulated by IFN-, and TNF. Expression of IDO in cornea was significantly increased following corneal transplantation. However, inhibition of IDO activity in vivo had no effect on graft survival. Following IDO cDNA transfer, murine corneal endothelial cells expressed functional IDO, which was effective at inhibiting allogeneic T cell proliferation. Over-expression of IDO in donor corneal allografts resulted in prolonged graft survival. While, on one hand, our data indicate that IDO may augment corneal immune privilege, up-regulated IDO activity following cytokine stimulation may serve to inhibit inflammatory cellular responses. While increasing IDO mRNA expression was found in allogeneic corneas at rejection, over-expression in donor cornea was found to significantly extend survival of allografts. [source] Modulation of dendritic cell maturation and function with mono- and bifunctional small interfering RNAs targeting indoleamine 2,3-dioxygenaseIMMUNOLOGY, Issue 1pt2 2009Gro F. Flatekval Summary Antigen-presenting cells expressing indoleamine 2,3-dioxygenase (IDO) play a critical role in maintaining peripheral tolerance. Strategies to inhibit IDO gene expression and enhance antigen-presenting cell function might improve anti-tumour immunity. Here we have designed highly effective anti-IDO small interfering (si) RNAs that function at low concentrations. When delivered to human primary immune cells such as monocytes and dendritic cells (DCs), they totally inhibited IDO gene expression without impairing DC maturation and function. Depending on the design and chemical modifications, we show that it is possible to design either monofunctional siRNAs devoid of immunostimulation or bifunctional siRNAs with gene silencing and immunostimulatory activities. The latter are able to knockdown IDO expression and induce cytokine production through either endosomal Toll-like receptor 7/8 or cytoplasmic retinoid acid-inducible gene 1 helicase. Inhibition of IDO expression with both classes of siRNAs inhibited DC immunosuppressive function on T-cell proliferation. Immature monocyte-derived DCs that had been transfected with siRNA-bearing 5,-triphosphate activated T cells, indicating that, even in the absence of external stimuli such as tumour necrosis factor-,, those DCs were sufficiently mature to initiate T-cell activation. Collectively, our data highlight the potential therapeutic applications of this new generation of siRNAs in immunotherapy. [source] Apoptotic cells induce dendritic cell-mediated suppression via interferon-,-induced IDOIMMUNOLOGY, Issue 1 2008Charlotte A. Williams Summary Dendritic cells (DC) are sensitive to their local environment and are affected by proximal cell death. This study investigated the modulatory effect of cell death on DC function. Monocyte-derived DC exposed to apoptotic Jurkat or primary T cells failed to induce phenotypic maturation of the DC and were unable to support CD4+ allogeneic T-cell proliferation compared with DC exposed to lipopolysaccharide (LPS) or necrotic cells. Apoptotic cells coincubated with LPS- or necrotic cell-induced mature DC significantly suppressed CD80, CD86 and CD83 and attenuated LPS-induced CD4+ T-cell proliferation. Reduced levels of interleukin-12 (IL-12), IL-10, IL-6, tumour necrosis factor-, and interferon-, (IFN-,) were found to be concomitant with the suppressive activity of apoptotic cells upon DC. Furthermore, intracellular staining confirmed IFN-, expression by DC in association with apoptotic environments. The specific generation of IFN-, by DC within apoptotic environments is suggestive of an anti-inflammatory role by the induction of indoleamine 2,3-dioxygenase (IDO). Both neutralization of IFN-, and IDO blockade demonstrated a role for IFN-, and IDO in the suppression of CD4+ T cells. Moreover, we demonstrate that IDO expression within the DC was found to be IFN-,-dependent. Blocking transforming growth factor-, (TGF-,) also produced a partial release in T-cell proliferation. Our study strongly suggests that apoptosis-induced DC suppression is not an immunological null event and two prime mediators underpinning these functional effects are IFN-,-induced IDO and TGF-,. [source] Genetic Variation in the Indoleamine 2,3-Dioxygenase Gene in Pre-eclampsiaAMERICAN JOURNAL OF REPRODUCTIVE IMMUNOLOGY, Issue 1 2010Haruki Nishizawa Citation Nishizawa H, Kato T, Ota S, Nishiyama S, Pryor-Koishi K, Suzuki M, Tsutsumi M, Inagaki H, Kurahashi H, Udagawa Y. Genetic variation in the indoleamine 2,3-Dioxygenase gene in pre-eclampsia. Am J Reprod Immunol 2010; 64: 68,76 Problem, To investigate the contribution of genomic variations in the indoleamine 2,3-dioxygenase (IDO) gene to the onset of pre-eclampsia. Method of study, We examined sequence variations in the IDO1 gene using placental genomic DNA from 35 pre-eclamptic patients and 32 normotensive pregnant women. Results, A case,control study revealed that none of the common variants influences the risk of disease. Sequencing of each IDO1 exon in diseased subjects revealed rare variants. This variation, c.-147_150delGAAA, was located within the 5,-untranslated region of the IDO1 gene, and its homozygote was identified only in pre-eclamptic subjects. However, despite the low levels of IDO expression and enzyme activity in the c.-147_150delGAAA homozygote, reporter assays indicated that this variation does not affect gene expression. Conclusion, Our findings indicate that genetic alteration of fetal IDO gene does not appear to be a primary cause of pre-eclampsia. [source] Induction of Indoleamine 2,3-Dioxygenase by Gene Delivery in Allogeneic Islets Prolongs Allograft SurvivalAMERICAN JOURNAL OF TRANSPLANTATION, Issue 8 2010H. Dellê Indoleamine 2,3-dioxygenase (IDO), an enzyme that plays a critical role in fetomaternal tolerance, exerts immunoregulatory functions suppressing T-cell responses. The aims of this study were to promote IDO expression in rat islets using a nonviral gene transfer approach, and to analyze the effect of the in vivo induction of IDO in a model of allogeneic islet transplantation. The IDO cDNA was isolated from rat placenta, subcloned into a plasmid and transfected into rat islets using Lipofectamine. The efficiency of transfection was confirmed by qRT-PCR and functional analysis. The in vivo effect of IDO expression was analyzed in streptozotocin-induced diabetic Lewis rats transplanted with allogeneic islets under the renal capsule. Transplantation of IDO-allogeneic islets reversed diabetes and maintained metabolic control, in contrast to transplantation of allogeneic nontransfected islets, which failed shortly after transplantation in all animals. Graft survival of allograft islets transfected with IDO transplanted without any immunosuppression was superior to that observed in diabetic rats receiving nontransfected islets. These data demonstrated that IDO expression induced in islets by lipofection improved metabolic control of streptozotocin-diabetic rats and prolonged allograft survival. [source] Role of CD8+ CD25+ Foxp3+ regulatory T cells in multiple sclerosisANNALS OF NEUROLOGY, Issue 5 2010Jorge Correale MD Objective The objective of this study was to investigate the role of CD8+ CD25+ FoxP3+ cells during the course of multiple sclerosis (MS). Methods Peripheral blood and cerebrospinal fluid (CSF) CD8+ T-cell clones (TCCs) recognizing autoreactive CD4+ T cells were isolated from 20 MS patients during exacerbations, 15 patients in remission, 15 healthy subjects, and 10 patients with other inflammatory neurological diseases. Characteristics of noncytotoxic CD8+ CD25+ regulatory T cells were studied. Cell phenotype was evaluated using flow cytometry. Cytokine production and phospho-signal transducer and activator of transcription 3 (STAT3) concentration were determined using enzyme-linked immunosorbent assay. To assess 2,3-dioxygenase (IDO) activity on dendritic cells (DCs), kynurenine concentration was measured by high-performance liquid chromatography. Results Inhibition of CD4+ self-reactive T-cell proliferation, and of interferon-, and interleukin (IL)-17 secretion, was observed after adding CD8+ CD25+ FoxP3+ cells to cultures. Suppression was abrogated by silencing FoxP3 using small interfering RNA. Cells were CD122+, CTLA-4+, GITR+, CCR7+, and CD62L+, producing IL-10 and transforming growth factor-,. CD8+ CD25+ FoxP3+ cells downregulated costimulatory molecule expression on dendritic cells through a STAT3-mediated pathway, resulting in less efficient antigen presentation, and induced IDO expression on DCs through STAT3 and cytotoxic T-lymphocyte antigen 4-dependent mechanisms. CD8+ regulatory TCC cloning frequency studied in blood and CSF was suppressed to a greater degree during exacerbations than during remission or in controls. Likewise, in CSF of MS patients during acute exacerbations, lower levels of CD8+ CD25+ FoxP3+ T cells were detected using flow cytometry. Interpretation CD8+ CD25+ FoxP3+ cells are novel regulatory cells exerting significant influence over self-reactive CD4+ T-cell regulation during the course of MS. Induction of these cells may provide new therapeutic alternatives for MS by eliminating or inhibiting self-reactive T cells. ANN NEUROL 2010;67:625,638 [source] |