I Mutations (i + mutation)

Distribution by Scientific Domains


Selected Abstracts


Compound heterozygosity of two missense mutations in the NADH-cytochrome b5 reductase gene of a Polish patient with type I recessive congenital methaemoglobinaemia

EUROPEAN JOURNAL OF HAEMATOLOGY, Issue 6 2003
Dorota Grabowska
Abstract: A case of type I methaemoglobinaemia observed in a Polish subject with compound heterozygosity for two mutations in the reduced nicotinamide adenine dinucleotide (NADH) cytochrome b5 reductase (b5R) gene is described. One is a novel mutation 647T,C which leads to substitution of isoleucine by threonine at position 215 (I215T). This maternal mutation was found in several family members. A previously known mutation, 757G,A, leads to the replacement of valine by methionine at position 252 (V252M). The latter mutation was found also in the father and one of the two brothers. The effects of these mutations were analysed on a model of the human b5R protein obtained by homology modelling. Although both amino acid substitutions are located in the NADH-binding domain, the whole protein structure, especially the region between the flavin adenine dinucleotide and NADH-binding domains, is disturbed. The structural changes in the I215T mutant are less prominent than those in the V252M mutant. We presume that the 647T,C mutation is a type I mutation, however, it has not been observed in the homozygous state. [source]


An inherited mitochondrial DNA disruptive mutation shifts to homoplasmy in oncocytic tumor cells,

HUMAN MUTATION, Issue 3 2009
Giuseppe Gasparre
Abstract A disruptive frameshift mtDNA mutation affecting the ND5 subunit of complex I is present in homoplasmy in a nasopharyngeal oncocytic tumor and inherited as a heteroplasmic germline mutation recurring in two of the patient's siblings. Homoplasmic ND5 mutation in the tumor correlates with lack of the ND6 subunit, suggesting complex I disassembly. A few oncocytic areas, expressing ND6 and heteroplasmic for the ND5 mutation, harbor a de novo homoplasmic ND1 mutation. Since shift to homoplasmy of ND1 and ND5 mutations occurs exclusively in tumor cells, we conclude that complex I mutations may have a selective advantage and accompany oncocytic transformation. Hum Mutat 0, 1,6, 2008. © 2008 Wiley-Liss, Inc. [source]


Type V Osteogenesis Imperfecta: A New Form of Brittle Bone Disease,

JOURNAL OF BONE AND MINERAL RESEARCH, Issue 9 2000
Francis H. Glorieux
Abstract Osteogenesis imperfecta (OI) is commonly subdivided into four clinical types. Among these, OI type IV clearly represents a heterogeneous group of disorders. Here we describe 7 OI patients (3 girls), who would typically be classified as having OI type IV but who can be distinguished from other type IV patients. We propose to call this disease entity OI type V. These children had a history of moderate to severe increased fragility of long bones and vertebral bodies. Four patients had experienced at least one episode of hyperplastic callus formation. The family history was positive for OI in 3 patients, with an autosomal dominant pattern of inheritance. All type V patients had limitations in the range of pronation/supination in one or both forearms, associated with a radiologically apparent calcification of the interosseous membrane. Three patients had anterior dislocation of the radial head. A radiodense metaphyseal band immediately adjacent to the growth plate was a constant feature in growing patients. Lumbar spine bone mineral density was low and similar to age-matched patients with OI type IV. None of the type V patients presented blue sclerae or dentinogenesis imperfecta, but ligamentous laxity was similar to that in patients with OI type IV. Levels of biochemical markers of bone metabolism generally were within the reference range, but serum alkaline phosphatase and urinary collagen type I N-telopeptide excretion increased markedly during periods of active hyperplastic callus formation. Qualitative histology of iliac biopsy specimens showed that lamellae were arranged in an irregular fashion or had a meshlike appearance. Quantitative histomorphometry revealed decreased amounts of cortical and cancellous bone, like in OI type IV. However, in contrast to OI type IV, parameters that reflect remodeling activation on cancellous bone were mostly normal in OI type V, while parameters reflecting bone formation processes in individual remodeling sites were clearly decreased. Mutation screening of the coding regions and exon/intron boundaries of both collagen type I genes did not reveal any mutations affecting glycine codons or splice sites. In conclusion, OI type V is a new form of autosomal dominant OI, which does not appear to be associated with collagen type I mutations. The genetic defect underlying this disease remains to be elucidated. [source]


Novel markers of inflammation identified in tumor necrosis factor receptor,associated periodic syndrome (TRAPS) by transcriptomic analysis of effects of TRAPS-associated tumor necrosis factor receptor type I mutations in an endothelial cell line

ARTHRITIS & RHEUMATISM, Issue 1 2009
Susana L. Rebelo
Objective To analyze the effects of tumor necrosis factor receptor,associated periodic syndrome (TRAPS),associated mutant tumor necrosis factor receptor type I (TNFRI) expression in a cell type directly relevant to the inflammation in TRAPS, and to identify novel markers associated with mutant TNFRI expression. Methods Transcriptome analysis on 30,000 human genes was performed on SK-Hep-1 human endothelial cells transfected with either wild-type (WT) or TRAPS-associated mutant TNFRI. Quantitative reverse transcriptase,polymerase chain reaction and protein expression levels measured by enzyme-linked immunosorbent assay verified transcriptional changes for selected genes both in supernatants from cells expressing mutant TNFRI and in patient plasma. Results Cells expressing mutant TNFRI showed up-regulation of multiple proinflammatory genes relative to WT transfectants, including genes for pentraxin 3, granulocyte,macrophage colony-stimulating factor, granulocyte colony-stimulating factor, CCL2, and CCL5, which were also expressed as proteins. In addition, the expression of most of these markers was increased in the plasma and peripheral blood mononuclear cells from TRAPS patients relative to those from healthy controls. The cysteine mutations (C33Y and C52F), which are associated with a more severe clinical phenotype, induced more genes than the low-penetrance mutation R92Q, which is associated with a milder phenotype. The expression of most genes was induced by a death domain (DD),dependent mechanism, since they were not induced by expression of TNFRI mutants with an inactivated DD. Conclusion TRAPS-associated TNFRI mutants induce the expression of multiple genes encoding inflammatory molecules, cellular receptors, transcription factors, and regulators of apoptosis in endothelial cells that require the cytoplasmic signaling properties of the receptor. Different mutants have specific expression profiles, indicating mutation-specific effects. The expression of some of these markers was also elevated in samples from TRAPS patients. [source]