Home About us Contact | |||
Hyperaemic Response (hyperaemic + response)
Selected AbstractsHuman cutaneous reactive hyperaemia: role of BKCa channels and sensory nervesTHE JOURNAL OF PHYSIOLOGY, Issue 1 2007Santiago Lorenzo Reactive hyperaemia is the increase in blood flow following arterial occlusion. The exact mechanisms mediating this response in skin are not fully understood. The purpose of this study was to investigate the individual and combined contributions of (1) sensory nerves and large-conductance calcium activated potassium (BKCa) channels, and (2) nitric oxide (NO) and prostanoids to cutaneous reactive hyperaemia. Laser-Doppler flowmetry was used to measure skin blood flow in a total of 18 subjects. Peak blood flow (BF) was defined as the highest blood flow value after release of the pressure cuff. Total hyperaemic response was calculated by taking the area under the curve (AUC) of the hyperaemic response minus baseline. Infusates were perfused through forearm skin using microdialysis in four sites. In the sensory nerve/BKCa protocol: (1) EMLA® cream (EMLA, applied topically to skin surface), (2) tetraethylammonium (TEA), (3) EMLA®+ TEA (Combo), and (4) Ringer solution (Control). In the prostanoid/NO protocol: (1) ketorolac (Keto), (2) NG -nitro- l -arginine methyl ester (l -NAME), (3) Keto +l -NAME (Combo), and (4) Ringer solution (Control). CVC was calculated as flux/mean arterial pressure and normalized to maximal flow. Hyperaemic responses in Control (1389 ± 794%CVCmax s) were significantly greater compared to TEA, EMLA and Combo sites (TEA, 630 ± 512, P= 0.003; EMLA, 421 ± 216, P < 0.001; Combo, 201 ± 200, P < 0.001%CVCmax s). Furthermore, AUC in Combo (Keto +l -NAME) site was significantly greater than Control (4109 ± 2777 versus 1295 ± 368%CVCmax s). These data suggest (1) sensory nerves and BKCa channels play major roles in the EDHF component of reactive hyperaemia and appear to work partly independent of each other, and (2) the COX pathway does not appear to have a vasodilatory role in cutaneous reactive hyperaemia. [source] Does aerobic fitness influence microvascular function in healthy adults at risk of developing Type 2 diabetes?DIABETIC MEDICINE, Issue 4 2005A. R. Middlebrooke Abstract Aim To investigate whether aerobic fitness is associated with skin microvascular function in healthy adults with an increased risk of developing Type 2 diabetes. Methods Twenty-seven healthy normal glucose-tolerant humans with either a previous diagnosis of gestational diabetes or having two parents with Type 2 diabetes and 27 healthy adults who had no history of diabetes were recruited. Maximal oxygen uptake was assessed using an incremental exercise test to exhaustion. Skin microvascular function was assessed using laser Doppler techniques as the maximum skin hyperaemic response to a thermal stimulus (maximum hyperaemia) and the forearm skin blood flow response to the iontophoretic application of acetylcholine (ACh) and sodium nitroprusside. Results Maximal oxygen uptake was not significantly different in the ,at-risk' group compared with healthy controls. Maximum hyperaemia was reduced in those ,at risk' (1.29 ± 0.30 vs. 1.46 ± 0.33 V, P = 0.047); however, the peak response to acetylcholine or sodium nitroprusside did not differ in the two groups. A significant positive correlation was demonstrated between maximal oxygen uptake and maximum hyperaemia (r = 0.52, P = 0.006 l/min and r = 0.60, P = 0.001 ml/kg/min) and peak ACh response (r = 0.40, P = 0.04 l/min and r = 0.47, P = 0.013 ml/kg/min) in the ,at-risk' group when expressed in absolute (l/min) or body mass-related (ml/kg/min) terms. No significant correlations were found in the control group. Conclusions In this ,at-risk' group with skin microvascular dysfunction maximal oxygen uptake was not reduced compared with healthy controls. However, in the ,at-risk' group alone, individuals with higher levels of aerobic fitness also had better microvascular and endothelial responsiveness. [source] Comparison of gingival blood flow during healing of simplified papilla preservation and modified Widman flap surgery: a clinical trial using laser Doppler flowmetryJOURNAL OF CLINICAL PERIODONTOLOGY, Issue 10 2007M. Retzepi Abstract Aim: This prospective randomized-controlled clinical trial compared the gingival blood flow responses following simplified papilla preservation (test) versus modified Widman flap (control). Materials and Methods: Twenty contra-lateral upper sites with pocket depth 5 mm after initial treatment in 10 chronic periodontitis patients were randomly assigned to either test or control treatment, using a split-mouth design. Laser Doppler flowmetry recordings were performed pre-operatively, following anaesthesia, immediately post-operatively and on days 1, 2, 3, 4, 7, 15, 30 and 60, at nine selected sites per flap. Results: Significant ischaemia was observed at all sites following anaesthesia and immediately post-operatively. At the mucosal flap basis, a peak hyperaemic response was observed on day 1, which tended to resolve by day 4 at the test sites, but persisted until day 7 at the control sites. The buccal and palatal papillae blood perfusion presented the maximum increase on day 7 in both groups and returned to baseline by day 15. Both surgical modalities yielded significant pocket depth reduction, recession increase and clinical attachment gain. Conclusions: Periodontal access flaps represent an ischaemia,reperfusion flap model. The simplified papilla preservation flap may be associated with faster recovery of the gingival blood flow post-operatively compared with the modified Widman flap. [source] Human cutaneous reactive hyperaemia: role of BKCa channels and sensory nervesTHE JOURNAL OF PHYSIOLOGY, Issue 1 2007Santiago Lorenzo Reactive hyperaemia is the increase in blood flow following arterial occlusion. The exact mechanisms mediating this response in skin are not fully understood. The purpose of this study was to investigate the individual and combined contributions of (1) sensory nerves and large-conductance calcium activated potassium (BKCa) channels, and (2) nitric oxide (NO) and prostanoids to cutaneous reactive hyperaemia. Laser-Doppler flowmetry was used to measure skin blood flow in a total of 18 subjects. Peak blood flow (BF) was defined as the highest blood flow value after release of the pressure cuff. Total hyperaemic response was calculated by taking the area under the curve (AUC) of the hyperaemic response minus baseline. Infusates were perfused through forearm skin using microdialysis in four sites. In the sensory nerve/BKCa protocol: (1) EMLA® cream (EMLA, applied topically to skin surface), (2) tetraethylammonium (TEA), (3) EMLA®+ TEA (Combo), and (4) Ringer solution (Control). In the prostanoid/NO protocol: (1) ketorolac (Keto), (2) NG -nitro- l -arginine methyl ester (l -NAME), (3) Keto +l -NAME (Combo), and (4) Ringer solution (Control). CVC was calculated as flux/mean arterial pressure and normalized to maximal flow. Hyperaemic responses in Control (1389 ± 794%CVCmax s) were significantly greater compared to TEA, EMLA and Combo sites (TEA, 630 ± 512, P= 0.003; EMLA, 421 ± 216, P < 0.001; Combo, 201 ± 200, P < 0.001%CVCmax s). Furthermore, AUC in Combo (Keto +l -NAME) site was significantly greater than Control (4109 ± 2777 versus 1295 ± 368%CVCmax s). These data suggest (1) sensory nerves and BKCa channels play major roles in the EDHF component of reactive hyperaemia and appear to work partly independent of each other, and (2) the COX pathway does not appear to have a vasodilatory role in cutaneous reactive hyperaemia. [source] Heel skin hyperaemia: direct compression versus vascular occlusionCLINICAL PHYSIOLOGY AND FUNCTIONAL IMAGING, Issue 6 2003Harvey N. Mayrovitz Summary Vulnerability of the heel to ulceration in bed-bound persons is related to direct pressure-induced blood flow decreases. Periodic pressure reduction is a clinical strategy to help prevent ulcers by allowing flow-repayment hyperaemia that has a magnitude and duration thought to be related to the duration of the prior interval of ischaemia. However, there are reasons to question whether effects of flow stoppages caused by direct tissue loading are similar to those because of ischaemia without superimposed direct pressure. This question was investigated by comparing posterior heel skin blood flow responses via laser-Doppler perfusion monitoring of 27 supine-lying subjects in whom blood flow was reduced by 5-min of direct heel loading on a support surface and by 5-min of ankle-cuff compression. Results showed that blood flow reductions were the same for both methods but the hyperaemia was significantly greater when flow reduction was produced by direct heel loading. This was true for ratio of peak hyperaemic flow to baseline (8·20 ± 1·32 s versus 4·68 ± 0·80 s, P,0·001), hyperaemic to baseline 3-min flow-time area ratios (4·70 ± 0·65 s versus 1·95 ± 0·29 s, P,0·001) and for total hyperaemia durations (352 ± 39 s versus 181 ± 14 s, P<0·001). These findings raise new questions regarding the precise physiological effects of heel and tissue loading in general, the factors that contribute to the hyperaemic response and their clinical impact and interpretation. Possible sources of the observed greater post-loading hyperaemia responses are discussed. [source] Cardiac and coronary function in the Langendorff-perfused mouse heart modelEXPERIMENTAL PHYSIOLOGY, Issue 1 2009Melissa E. Reichelt The Langendorff mouse heart model is widely employed in studies of myocardial function and responses to injury (e.g. ischaemia). Nonetheless, marked variability exists in its preparation and functional properties. We examined the impact of early growth (8, 16, 20 and 24 weeks), sex, perfusion fluid [Ca2+] and pacing rate on contractile function and responses to 20 min ischaemia followed by 45 min reperfusion. We also assessed the impact of strain, and tested the utility of the model in studying coronary function. Under normoxic conditions, hearts from 8-week-old male C57BL/6 mice (2 mm free perfusate [Ca2+], 420 beats min,1) exhibited 145 ± 2 mmHg left ventricular developed pressure (LVDP). Force development declined by ,15% (126 ± 5 mmHg) with a reduction in free [Ca2+] to 1.35 mm, and by 25% (108 ± 3 mmHg) with increased pacing to 600 beats min,1. While elevated heart rate failed to modify ischaemic outcome, the lower [Ca2+] significantly improved contractile recovery (by >30%). We detected minimal sex-dependent differences in normoxic function between 8 and 24 weeks, although age modified contractile function in males (increased LVDP at 24 versus 8 weeks) but not females. Both male and female hearts exhibited age-related reductions in ischaemic tolerance, with a significant decline in recovery evident at 16 weeks in males and later, at 20,24 weeks, in females (versus recoveries in hearts at 8 weeks). Strain also modified tolerance to ischaemia, with similar responses in hearts from C57BL/6, 129/sv, Quackenbush Swiss and FVBN mice, but substantially greater tolerance in BALB/c hearts. In terms of vascular function, baseline coronary flow (20,25 ml min,1 g,1) was 50,60% of maximally dilated flows, and coronary reactive and functional hyperaemic responses were pronounced (up to 4-fold elevations in flow in hearts lacking ventricular balloons). These data indicate that attention to age (and sex) of mice will reduce variability in contractile function and ischaemic responses. Even small differences in perfusion fluid [Ca2+] also significantly modify tolerance to ischaemia (whereas modest shifts in heart rate do not impact). Ischaemic responses are additionally strain dependent, with BALB/c hearts displaying greatest intrinsic tolerance. Finally, the model is applicable to the study of vascular reactivity, providing large responses and excellent reproducibility. [source] |