Hydroxylase Activity (hydroxylase + activity)

Distribution by Scientific Domains


Selected Abstracts


Regulation of Tyrosine Hydroxylase Activity and Phosphorylation at Ser19 and Ser40 via Activation of Glutamate NMDA Receptors in Rat Striatum

JOURNAL OF NEUROCHEMISTRY, Issue 6 2000
Niklas Lindgren
Abstract: The activity of tyrosine hydroxylase, the rate-limiting enzyme in the biosynthesis of dopamine, is stimulated by phosphorylation. In this study, we examined the effects of activation of NMDA receptors on the state of phosphorylation and activity of tyrosine hydroxylase in rat striatal slices. NMDA produced a time-and concentration-dependent increase in the levels of phospho-Ser19 -tyrosine hydroxylase in nigrostriatal nerve terminals. This increase was not associated with any changes in the basal activity of tyrosine hydroxylase, measured as DOPA accumulation. Forskolin, an activator of adenylyl cyclase, stimulated tyrosine hydroxylase phosphorylation at Ser40 and caused a significant increase in DOPA accumulation. NMDA reduced forskolin-mediated increases in both Ser40 phosphorylation and DOPA accumulation. In addition, NMDA reduced the increase in phospho-Ser40 -tyrosine hydroxylase produced by okadaic acid, an inhibitor of protein phosphatase 1 and 2A, but not by a cyclic AMP analogue, 8-bromo-cyclic AMP. These results indicate that, in the striatum, glutamate decreases tyrosine hydroxylase phosphorylation at Ser40 via activation of NMDA receptors by reducing cyclic AMP production. They also provide a mechanism for the demonstrated ability of NMDA to decrease tyrosine hydroxylase activity and dopamine synthesis. [source]


Interaction of Drugs and Chinese Herbs: Pharmacokinetic Changes of Tolbutamide and Diazepam Caused by Extract of Angelica dahurica

JOURNAL OF PHARMACY AND PHARMACOLOGY: AN INTERNATI ONAL JOURNAL OF PHARMACEUTICAL SCIENCE, Issue 8 2000
KAZUHISA ISHIHARA
The inhibitory effects of Angelica dahurica root extract on rat liver microsomal cytochrome P450 and drug-drug interactions were studied. The 2,- and 16,-hydroxylase activity of testosterone were most strongly inhibited, with 17.2% and 28.5% of their activity remaining, respectively, after oral administration of A. dahurica extract at a 1 g kg,1 dose. 6,-Hydroxylase activity was also inhibited, with 70% of its activity remaining, under the same conditions. In addition, treatment with the extract inhibited the metabolism of tolbutamide, nifedipine and bufuralol. These results showed that the extract inhibited the various isoforms of cytochrome P450 such as CYP2C, CYP3A and CYP2D1. The A. dahurica extract delayed elimination of tolbutamide after intravenous administration at a 10 mg kg,1 dose to rats. Thus, the extract altered the liver intrinsic clearance. It had little effect, however, on the pharmacokinetic parameters of diazepam after intravenous administration at 10 mg kg,1. Since diazepam showed high clearance, it underwent hepatic blood flow rate-limited metabolism. Therefore, the change of intrinsic clearance had little effect on hepatic clearance. However, the Cmax value after oral administration of diazepam with extract treatment was four times that with non-treatment. It was suggested that the first-pass effect was changed markedly by the extract. High-dose (1 g kg,1), but not low dose (0.3 g kg,1), administration of A. dahurica extract increased significantly the duration of rotarod disruption following intravenous administration of diazepam at 5 mg kg,1. It was concluded that administration of A. dahurica extract has the potential to interfere with the metabolism, by liver cytochrome P450, of other drugs. [source]


Hepatic microsomal cytochrome P450 enzyme activity in relation to in vitro metabolism/inhibition of polychlorinated biphenyls and testosterone in Baltic grey seal (Halichoerus grypus)

ENVIRONMENTAL TOXICOLOGY & CHEMISTRY, Issue 3 2003
Hongxia Li
Abstract Among other factors, cytochrome P450 (CYP) enzyme activity determines polychlorinated biphenyl (PCB) bioaccu-mulation, biotransformation, and toxicity in exposed species. We measured the oxidative metabolism in vitro of 12 PCB congeners, representing structural groups based on the number and position of the chlorine atoms, by the hepatic microsomes of one Baltic grey seal (Halichoerus grypus). Microsomal metabolism was observed for several PCBs with vicinal H atoms exclusively in the ortho and meta positions and without any ortho -Cl substituents (CB-15 [4,4,-Cl2] and CB-77 [3,3,,4,4,-Cl4]), vicinal meta and para -H atoms (CB-52 [2,2,,5,5,-Cl4], and ,101 [2,2,,4,5,5,-Cl5]) or with both characteristics in combination with either only one ortho -Cl (CB-26 [2,3,,5-Cl3], CB-31 [2,4,,5-Cl3]) or two ortho -Cl substituents (CB-44 [2,2,,3,5,-Cl4]). To allocate PCB biotransformation to specific CYPs, the inhibitive effect of compounds with known CYP-specific inhibition properties was assessed on in vitro PCB metabolism and on regio- and stereospecific testosterone hydroxylase activities. Metabolic inhibition was considered relevant at concentrations ,1.0 ,M because these inhibitors became decreasingly selective at higher concentrations. At <1.0 ,M, ellipticine (CYP1A1/2 inhibitor) selectively inhibited CB-15, ,26, ,31, and ,77 metabolism, with no significant inhibition of CB-44, ,52, and ,101 metabolism. Inhibition of CB-52 and ,101 metabolism by chloramphenicol (CYP2B inhibitor) started at 1.0 ,M and maximized at about 100% at 10 ,M. Ketoconazole (CYP3A inhibitor) appeared to selectively inhibit CB-26, ,31, and ,44 metabolism relative to CB-15, ,77, and ,52 at concentrations ,1.0 ,M. Major testosterone metabolites formed in vitro were 2,-(CYP3A), 6,- (CYP3A, CYP1A), and 16,- (CYP2B) hydroxytestosterone and androstenedione (CYP2B, CYP2C11). The CYP forms indicated are associated with the specific metabolism of testosterone in laboratory animals. Inhibition of 2,- and 6,-hydroxytestosterone formation at ellipticine and ketoconazole concentrations ,1.0,M suggested that both inhibitors were good substrates of CYP3A-like enzymes in grey seal. Chloramphenicol (model for CYP2B) is apparently not a good inhibitor of CYP1A and CYP3A activities in grey seal because the chemical did not inhibit any metabolic route of testosterone at concentrations from 0.1 to 10 ,M. Our findings demonstrated that at least CYP1A- and CYP3A-like enzymes in the liver of grey seals are capable of metabolizing PCBs with ortho - meta and/or meta - para vicinal hydrogens. A CYP2B form might also be involved, but this could not be proven by the results of our experiments. Defining the profiles of CYP enzymes that are responsible for PCB biotransformation is necessary to fully understand the bioaccumulation, toxicokinetics, and risk of PCB exposure in seals and other free-ranging marine mammals. [source]


Biotransformation enzymes in Cunninghamella blakesleeana (NCIM-687)

JOURNAL OF BASIC MICROBIOLOGY, Issue 6 2006
Sanjyot Bhosale
Presence of higher enzyme levels of aminopyrine N-demethylase, aniline hydroxylase and 11- , hydroxylase activities were observed in Cunninghamella blakesleeana grown in potato-dextrose medium for 96 h. The enzyme activity preferred NADPH as a cofactor and showed inhibition with CO, indicating cytochrome P450 mediated reactions. A significant increase in aniline hydroxylase enzyme activity was observed when mycelia incubated in incubation medium containing different inducers (viz. camphor, cholesterol, naphthalene, veratrole, phenobarbital, n -hexadecane and ethyl alcohol) when compared with mycelia incubated in same way but in absence of inducers. Cunninghamella blakesleeana (NCIM 687) have shown the ability to degrade cholesterol, camphor and naphthalene when 96 h grown mycelia incubated in incubation medium containing these organic compounds. (© 2006 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim) [source]


Effects of Light and Dark Beer on Hepatic Cytochrome P-450 Expression in Male Rats Receiving Alcoholic Beverages as Part of Total Enteral Nutrition

ALCOHOLISM, Issue 5 2005
Mats Hidestrand
Background: Alcoholic beverages contain many congeners in addition to ethanol. Therefore, consumption of alcoholic beverages may have considerably different effects on expression of hepatic microsomal monooxygenases than the relatively selective induction of cytochrome P-450 (CYP) 2E1 observed after consumption of pure ethanol. Methods: In the current study, we compared the effects of two beers: lager (a light roasted beer) and stout (a dark roasted beer) with those of an equivalent amount of pure ethanol on hepatic CYP expression. Beer or pure ethanol was part of a complete total enteral nutrition diet that was infused intragastrically into male Sprague Dawley rats for 21 days. At the end of the infusion period, rats were euthanized, and liver and intestinal microsomes were prepared. Expression and activity of CYP1A1/2, CYP2B1, CYP2E1, CYP3A, and CYP4A were assessed by Western immunoblotting and by using CYP enzyme,specific substrates, respectively. Results: mRNA and protein levels of CYP4A1 were elevated only in stout-treated animals. However, lauric acid 12-hydroxylase activity (a CYP4A-specific activity) was reduced (p, 0.05) in microsomes from lager- and stout-fed rats. After oxidation with potassium ferricyanide, this activity was significantly increased in microsomes from stout-fed animals. The relative expression of CYP2E1 and CYP2B1 and the activities toward p -nitrophenol, pentoxyresorufin, or benzyloxyresorufin did not differ between beers or compared with pure ethanol or controls. However, the mean expression of CYP1A2, CYP3A, and CYP4A apoproteins was greater in liver microsomes from stout-infused rats than in those from lager-infused rats, ethanol-infused rats, and diet controls (p, 0.05). In addition, although no significant differences were observed in ethoxyresorufin O-dealkylase (EROD), methoxyresorufin O-dealkylase (MROD), midazolam, or testosterone hydroxylase activities between groups, stout-infused rats had greater hepatic microsomal erythromycin N -demethylase activity than other groups (p, 0.05). Conclusions: Stout contains components other than ethanol that interact in a complex fashion with the monooxygenase system. [source]


Purification of citrus limonoids and their differential inhibitory effects on human cytochrome P450 enzymes

JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE, Issue 9 2007
Shibu M Poulose
Abstract Recent studies demonstrated that citrus limonoids and flavonoids possess numerous health promoting properties. In the present study, glucosides of limonoids and flavonoids were purified from citrus molasses and limonoid aglycones from citrus seeds. Glucosides were separated on styrene (divinylbenzene), Q-sepharose resins with increasing concentration of sodium chloride. A pH-dependent cold precipitation was carried out for the isolation of naringin in large quantity. Major aglycones such as limonin and nomilin were isolated from seeds by direct crystallization and minor limonoids were purified by vacuum liquid chromatography. The structures of the isolated compounds were confirmed by NMR spectra. Individual limonoids were tested for O -dealkylase and hydroxylase activities of human cytochrome P450 (CYP) isoenzymes such as CYP1A2, CYP1B1, CYP3A4 and CYP19, using ethoxyresorufin, methoxyresorufin and dibenzylfluorescein as substrates. Partial to high inhibition of CYPs was observed in dose-dependent assays. Significant (P < 0.001) reductions in enzyme activities were observed with purified compounds above 2 µmol. Kinetic analyses indicated that limonin glucoside inhibited CYP19 competitively (IC50, 7.1 µ mol L,1), whereas Nomilinic acid glucoside inhibited it noncompetitively (IC50, 9.4 µ mol,1). Nomilinic acid glucoside was the most potent limonoid, with an overall IC50 of < 10 µ mol, for all the enzymes tested. The differential inhibition of CYPs can be ascribed to structural variations of the limonoid nucleus. Limonoid inhibition of key CYPs involved in carcinogenesis supports growing evidence that citrus limonoids act as anticancer agents. Copyright © 2007 Society of Chemical Industry [source]


Disappearance of gender-related difference in the toxicity of benzotriazole ultraviolet absorber in juvenile rats

CONGENITAL ANOMALIES, Issue 4 2009
Mutsuko Hirata-Koizumi
ABSTRACT 2-(2,-hydroxy-3,,5,-di- tert -butylphenyl)benzotriazole (HDBB) is an ultraviolet absorber used in plastic resin products, such as building materials and automobile components. In oral repeated dose toxicity studies using 5- or 6-week-old rats, this chemical induced hepatic histopathological changes, such as hypertrophy accompanied with eosinophilic granular changes and focal necrosis of hepatocytes, and male rats showed nearly 25 times higher susceptibility to the toxic effects than females. Castration at approximately 4 weeks of age markedly reduced the sex-related variation in HDBB toxicity, but some difference, less than five times, remained between male and female castrated rats. Following oral HDBB administration to male and female juvenile rats from postnatal days 4,21, such gender-related difference in toxic susceptibility was not detected; therefore, it is speculated that the determinants of susceptibility to HDBB toxicity are differentiated between sexes after weaning. In young rats given HDBB, there was no gender-related difference in plasma HDBB concentration, and no metabolites were detected in the plasma of either sex. HDBB induced lauric acid 12-hydroxylase activity in the liver and this change was more pronounced in males than in females. These findings indicate that HDBB could show hepatic peroxisome proliferation activity, and the difference in the susceptibility of male and female rats to this effect might lead to marked gender-related differences in toxicity. [source]


Validity of ,post-traumatic stress disorder with secondary psychotic features': a review of the evidence

ACTA PSYCHIATRICA SCANDINAVICA, Issue 1 2009
M. H. Braakman
Objective:, To review the evidence from empirical studies regarding the validity of ,post-traumatic stress disorder with secondary psychotic features' (PTSD-SP) as a separate diagnostic entity. Method:, The authors performed a review tracing publications between 1980 and January 2008. Results:, Twenty-four comparative studies were included. These studies indicate that PTSD-SP is a syndrome that comprises PTSD-symptoms followed in time by the additional appearance of psychotic features. The psychotic features are not confined to episodes of re-experiencing, but remain present continuously. PTSD-SP seems to have some biological features differentiating it from schizophrenia and PTSD, e.g. there are differences in smooth pursuit eye movement patterns, concentrations of corticotropin-releasing factor and dopamine ,-hydroxylase activity. Conclusion:, There is currently not yet full support for PTSD-SP as a nosological entity. However, the delineation of PTSD-SP from other psychiatric syndromes is notable and biological studies seem to support the validity as a separate diagnostic entity. [source]


Vitamin D and calcium deficits predispose for multiple chronic diseases

EUROPEAN JOURNAL OF CLINICAL INVESTIGATION, Issue 5 2005
M. Peterlik
Abstract There is evidence from both observational studies and clinical trials that calcium malnutrition and hypovitaminosis D are predisposing conditions for various common chronic diseases. In addition to skeletal disorders, calcium and vitamin D deficits increase the risk of malignancies, particularly of colon, breast and prostate gland, of chronic inflammatory and autoimmune diseases (e.g. insulin-dependent diabetes mellitus, inflammatory bowel disease, multiple sclerosis), as well as of metabolic disorders (metabolic syndrome, hypertension). The aim of the present review was to provide improved understanding of the molecular and cellular processes by which deficits in calcium and vitamin D cause specific changes in cell and organ functions and thereby increase the risk for chronic diseases of different aetiology. 1,25-dihydroxyvitamin D3 and extracellular Ca++ are both key regulators of proliferation, differentiation and function at the cellular level. However, the efficiency of vitamin D receptor-mediated intracellular signalling is limited by the negative effects of hypovitaminosis D on extrarenal 25-hydroxyvitamin D-1,-hydroxylase activity and thus on the production of 1,25-dihydroxyvitamin D3. Calcium malnutrition eventually causes a decrease in calcium concentration in extracellular fluid compartments, resulting in organ-specific modulation of calcium-sensing receptor activity. Hence, attenuation of signal transduction from the ligand-activated vitamin D receptor and calcium-sensing receptor seems to be the prime mechanism by which calcium and vitamin D insufficiencies cause perturbation of cellular functions in bone, kidney, intestine, mammary and prostate glands, endocrine pancreas, vascular endothelium, and, importantly, in the immune system. The wide range of diseases associated with deficits in calcium and vitamin D in combination with the high prevalence of these conditions represents a special challenge for preventive medicine. [source]


Completing the hypusine pathway in Plasmodium

FEBS JOURNAL, Issue 20 2009
Deoxyhypusine hydroxylase is an E-Z type HEAT repeat protein
In searching for new targets for antimalarials we investigated the biosynthesis of hypusine present in eukaryotic initiation factor-5A (eIF-5A) in Plasmodium. Here, we describe the cloning and expression of deoxyhypusine hydroxylase (DOHH), which completes the modification of eIF-5A through hydroxylation of deoxyhypusine. The dohh cDNA sequence revealed an ORF of 1236 bp encoding a protein of 412 amino acids with a calculated molecular mass of 46.45 kDa and an isoelectric point of 4.96. Interestingly, DOHH from Plasmodium has a FASTA SCORE of only 27 compared with its human ortholog and contains several matches similar to E-Z-type HEAT-like repeat proteins (IPR004155 (InterPro), PF03130 (Pfam), SM00567 (SMART) present in the phycocyanin lyase subunits of cyanobacteria. Purified DOHH protein displayed hydroxylase activity in a novel in vitro DOHH assay, but phycocyanin lyase activity was absent. dohh is present as a single-copy gene and is transcribed in the asexual blood stages of the parasite. A signal peptide at the N-terminus might direct the protein to a different cellular compartment. During evolution, Plasmodium falciparum acquired an apicoplast that lost its photosynthetic function. It is possible that plasmodial DOHH arose from an E/F-type phycobilin lyase that gained a new role in hydroxylation. Structured digital abstract ,,MINT-7255047: DHS (uniprotkb:P49366) enzymaticly reacts (MI:0414) with eIF-5A (uniprotkb:Q710D1) by enzymatic studies (MI:0415) ,,MINT-7255326: DOHH (uniprotkb:Q8I701) enzymaticly reacts (MI:0414) with eIF-5A (uniprotkb:Q710D1) by enzymatic studies (MI:0415) [source]


Covalently crosslinked complexes of bovine adrenodoxin with adrenodoxin reductase and cytochrome P450scc

FEBS JOURNAL, Issue 6 2001
Edman degradation of complexes of the steroidogenic hydroxylase system, Mass spectrometry
NADPH-dependent adrenodoxin reductase, adrenodoxin and several diverse cytochromes P450 constitute the mitochondrial steroid hydroxylase system of vertebrates. During the reaction cycle, adrenodoxin transfers electrons from the FAD of adrenodoxin reductase to the heme iron of the catalytically active cytochrome P450 (P450scc). A shuttle model for adrenodoxin or an organized cluster model of all three components has been discussed to explain electron transfer from adrenodoxin reductase to P450. Here, we characterize new covalent, zero-length crosslinks mediated by 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide between bovine adrenodoxin and adrenodoxin reductase, and between adrenodoxin and P450scc, respectively, which allow to discriminate between the electron transfer models. Using Edman degradation, mass spectrometry and X-ray crystallography a crosslink between adrenodoxin reductase Lys27 and adrenodoxin Asp39 was detected, establishing a secondary polar interaction site between both molecules. No crosslink exists in the primary polar interaction site around the acidic residues Asp76 to Asp79 of adrenodoxin. However, in a covalent complex of adrenodoxin and P450scc, adrenodoxin Asp79 is involved in a crosslink to Lys403 of P450scc. No steroidogenic hydroxylase activity could be detected in an adrenodoxin ,P450scc complex/adrenodoxin reductase test system. Because the acidic residues Asp76 and Asp79 belong to the binding site of adrenodoxin to adrenodoxin reductase, as well as to the P450scc, the covalent bond within the adrenodoxin,P450scc complex prevents electron transfer by a putative shuttle mechanism. Thus, chemical crosslinking provides evidence favoring the shuttle model over the cluster model for the steroid hydroxylase system. [source]


Phytanoyl-CoA hydroxylase activity is induced by phytanic acid

FEBS JOURNAL, Issue 13 2000
Anna W. M. Zomer
Phytanic acid (3,7,11,15-tetramethylhexadecanoic acid) is a branched-chain fatty acid present in various dietary products such as milk, cheese and fish. In patients with Refsum disease, accumulation of phytanic acid occurs due to a deficiency of phytanoyl-CoA hydroxylase, a peroxisomal enzyme containing a peroxisomal targeting signal 2. Recently, phytanoyl-CoA hydroxylase cDNA has been isolated and functional mutations have been identified. As it has been shown that phytanic acid activates the nuclear hormone receptors peroxisome proliferator-activated receptor (PPAR), and all three retinoid X receptors (RXRs), the intracellular concentration of this fatty acid should be tightly regulated. When various cell lines were grown in the presence of phytanic acid, the activity of phytanoyl-CoA hydroxylase increased up to four times, depending on the particular cell type. In one cell line, HepG2, no induction of phytanoyl-CoA hydroxylase activity was observed. After addition of phytanic acid to COS-1 cells, an increase in phytanoyl-CoA hydroxylase activity was observed within 2 h, indicating a quick cell response. No stimulation of phytanoyl-CoA hydroxylase was observed when COS-1 cells were grown in the presence of clofibric acid, 9- cis -retinoic acid or both ligands together. This indicates that the activation of phytanoyl-CoA hydroxylase is not regulated via PPAR, or RXR. However, stimulation of PPAR, and all RXRs by clofibric acid and 9- cis -retinoic acid was observed in transient transfection assays. These results suggest that the induction of phytanoyl-CoA hydroxylase by phytanic acid does not proceed via one of the nuclear hormone receptors, RXR or PPAR,. [source]


Adenosine reverses a preestablished CCl4 -induced micronodular cirrhosis through enhancing collagenolytic activity and stimulating hepatocyte cell proliferation in rats

HEPATOLOGY, Issue 4 2001
Rolando Hernández-Muñoz
Cirrhosis is one of the most common causes of mortality worldwide, because hepatic dysfunction constitutes a potentially lethal condition. Having demonstrated the hepatoprotective effect of adenosine against CCl4 -induced cirrhosis, the present study was aimed at assessing adenosine's effect on an already-established micronodular cirrhosis. Chronic administration of CCl4 (10 weeks) induced a cirrhotic state, characterized by increased liver fibronectin and collagen types I and III content, enhanced expression of ,-1 (I) collagen mRNA, portal hypertension, and liver dysfunction. After CCl4 discontinuation (5 weeks), increased persitance of ,-1 (I) collagen mRNA expression and deposition, enhanced proline incorporation into collagen and prolyl hydroxylase activity evidenced active fibrogenesis. Several weeks after CCl4 withdrawal, deposited collagen showed an enhanced type I/III ratio, which was associated with deficient collagenolytic activity in cirrhotic livers. Liver expression of some metalloproteinases (MMPs) and of tissue inhibitors of MMPs (TIMPs) also indicated decreased collagen breakdown in cirrhotic livers. Parameters indicative of oxidative stress (mainly protein oxidation) were persistently augmented. These events were coincident with diminished regenerative capacity of the cirrhotic liver. Intraperitoneal adenosine administration to CCl4 -induced cirrhotic rats blocked active fibrogenesis and increased the collagen degradation (most probably by decreasing liver TIMPs levels), normalizing collagen-type ratios. In addition, the nucleoside promoted an effective hepatocyte's proliferation in the cirrhotic liver and accelerated normalization of parameters indicative of liver function and oxidative stress. Thus, adenosine readily reversed an experimental cirrhosis through stimulating liver collagenolytic and proliferative capacities, as well as by accelerating functional recovery. [source]


Biochemical and ultrastructural alterations in the rat ventral prostate due to repetitive alcohol drinking

JOURNAL OF APPLIED TOXICOLOGY, Issue 4 2007
M. I. Díaz Gómez
Abstract Previous studies showed that cytosolic and microsomal fractions from rat ventral prostate are able to biotransform ethanol to acetaldehyde and 1-hydroxyethyl radicals via xanthine oxidase and a non P450 dependent pathway respectively. Sprague Dawley male rats were fed with a Lieber and De Carli diet containing ethanol for 28 days and compared against adequately pair-fed controls. Prostate microsomal fractions were found to exhibit CYP2E1-mediated hydroxylase activity significantly lower than in the liver and it was induced by repetitive ethanol drinking. Ethanol drinking led to an increased susceptibility of prostatic lipids to oxidation, as detected by t-butylhydroperoxide-promoted chemiluminiscence emission and increased levels of lipid hydroperoxides (xylenol orange method). Ultrastructural alterations in the epithelial cells were observed. They consisted of marked condensation of chromatin around the perinuclear membrane, moderate dilatation of the endoplasmic reticulum and an increased number of epithelial cells undergoing apoptosis. The prostatic alcohol dehydrogenase activity of the stock rats was 4.84 times lower than that in the liver and aldehyde dehydrogenase activity in their microsomal, cytosolic and mitochondrial fractions was either not detectable or significantly less intense than in the liver. A single dose of ethanol led to significant acetaldehyde accumulation in the prostate. The results suggest that acetaldehyde accumulation in prostate tissue might result from both acetaldehyde produced in situ but also because of its low aldehyde dehydrogenase activity and its poor ability to metabolize acetaldehyde arriving via the blood. Acetaldehyde, 1-hydroxyethyl radical and the oxidative stress produced may lead to epithelial cell injury. Copyright © 2007 John Wiley & Sons, Ltd. [source]


Subchronic toxicity of chloral hydrate on rats: a drinking water study

JOURNAL OF APPLIED TOXICOLOGY, Issue 4 2002
R. Poon
Abstract The subchronic toxicity of chloral hydrate, a disinfection byproduct, was studied in rats following 13 weeks of drinking water exposure. Male (262 ± 10 g) and female (190 ± 8 g) Sprague-Dawley rats, ten animals per group, were administered chloral hydrate via drinking water at 0.2, 2, 20 and 200 ppm. Control animals received distilled water only. Gross and microscopic examinations, serum chemistry, hematology, biochemical analysis, neurogenic amine analysis and serum trichloroacetic acid (TCA) analysis were performed at the end of the treatment period. Bronchoalveolar fluids were collected at necropsy and urine specimens were collected at weeks 2, 6 and 12 for biochemical analysis. No treatment-related changes in food and water intakes or body weight gains were observed. There were no significant changes in the weights of major organs. Except for a mild degree of vacuolation within the myelin sheath of the optic nerves in the highest dose males, there were no notable histological changes in the tissues examined. Statistically significant treatment-related effects were biochemical in nature, with the most pronounced being increased liver catalase activity in male rats starting at 2 ppm. Liver aldehyde dehydrogenase (ALDH) was significantly depressed, whereas liver aniline hydroxylase activity was significantly elevated in both males and females receiving the highest dose. A dose-related increase in serum TCA was detected in both males and females starting at 2 ppm. An in vitro study of liver ALDH confirmed that chloral hydrate was a potent inhibitor, with an IC50 of 8 µM, whereas TCA was weakly inhibitory and trichloroethanol was without effect. Analysis of brain biogenic amines was conducted on a limited number (n = 5) of male rats in the control and high dose groups, and no significant treatment-related changes were detected. Taking into account the effect on the myelin sheath of male rats and the effects on liver ALDH and aniline hydroxylase of both males and females at the highest dose level, the no-observed-effect level (NOEL) was determined to be 20 ppm or 1.89 mg kg,1 day,1 in males and 2.53 mg kg,1 day,1 in females. This NOEL is ca. 1000-fold higher than the highest concentration of chloral hydrate reported in the municipal water supply. Copyright © 2002 Crown in the right of Canada. Published by John Wiley & Sons, Ltd. [source]


CYP3A4 is a Human Microsomal Vitamin D 25-Hydroxylase,

JOURNAL OF BONE AND MINERAL RESEARCH, Issue 4 2004
Ram P Gupta
Abstract The human hepatic microsomal vitamin D 25-hydroxylase protein and gene have not been identified with certainty. Sixteen hepatic recombinant microsomal enzymes were screened for 25-hydroxylase activity; 11 had some 25-hydroxylase activity, but CYP3A4 had the highest activity. In characterized liver microsomes, 25-hydroxylase activity correlated significantly with CYP3A4 testosterone 6,-hydroxylase activity. Activity in pooled liver microsomes was inhibited by known inhibitors of CYP3A4 and by an antibody to CYP3A2. Thus, CYP3A4 is a hepatic microsomal vitamin D 25-hydroxylase. Introduction: Studies were performed to identify human microsomal vitamin D-25 hydroxylase. Materials and Methods: Sixteen major hepatic microsomal recombinant enzymes derived from cytochrome P450 cDNAs expressed in baculovirus-infected insect cells were screened for 25-hydroxylase activity with 1,-hydroxyvitamin D2 [1,(OH)D2], 1,-hydroxyvitamin D3 [1,(OH)D3], vitamin D2, and vitamin D3 as substrates. Activity was correlated with known biological activities of enzymes in a panel of 12 characterized human liver microsomes. The effects of known inhibitors and specific antibodies on activity also were determined. Results: CYP3A4, the most abundant cytochrome P450 enzyme in human liver and intestine, had 7-fold greater activity than that of any of the other enzymes with 1,(OH)D2 as substrate. CYP3A4 25-hydroxylase activity was four times higher with 1,(OH)D2 than with 1,(OH)D3 as substrate, was much less with vitamin D2, and was not detected with vitamin D3. 1,(OH)D2 was the substrate in subsequent experiments. In a panel of characterized human liver microsomes, 25-hydroxylase activity correlated with CYP3A4 testosterone 6,-hydroxylase activity (r = 0.93, p < 0.001) and CYP2C91 diclofenac 4,-hydroxylase activity (r = 0.65, p < 0.05), but not with activity of any of the other enzymes. Activity in recombinant CYP3A4 and pooled liver microsomes was dose-dependently inhibited by ketoconazole, troleandomycin, isoniazid, and ,-naphthoflavone, known inhibitors of CYP3A4. Activity in pooled liver microsomes was inhibited by antibodies to CYP3A2 that are known to inhibit CYP3A4 activity. Conclusion: CYP3A4 is a vitamin D 25-hydroxylase for vitamin D2 in human hepatic microsomes and hydroxylates both 1,(OH)D2 and 1,(OH)D3. [source]


FACTORS AFFECTING LIPID OXIDATION IN BREAST AND THIGH MUSCLE FROM CHICKEN, TURKEY AND DUCK

JOURNAL OF FOOD BIOCHEMISTRY, Issue 4 2010
Y. GONG
ABSTRACT Lipid oxidation occurred rapidly in turkey muscle, intermediate in duck and slowest in chicken. pH was lowest in turkey muscle. Chicken muscle had a lower content of polyunsaturated fatty acids compared with turkey and duck muscles. The aqueous fraction of duck breast inhibited hemoglobin-mediated lipid oxidation in washed muscle more effectively than aqueous fractions from turkey and chicken muscle. ,-Tocopherol content was highest in duck muscle, intermediate in chicken and lowest in turkey. Depletion of tocopherols during frozen storage was more rapid in turkey and duck compared with chicken. It was thought that the elevated tocopherol level in chicken muscle may be caused by less efficient catabolism via the omega hydroxylation pathway. However, tocopherol hydroxylase activity was similar in chicken compared with turkey liver microsomes. Heme pigment content was around sixfold higher in duck breast compared with chicken and turkey breast. Duck thigh had especially elevated pH. PRACTICAL APPLICATIONS This work describes a number of factors that explain the wide variation in oxidative stability (chicken > duck > turkey) when comparing muscle tissues from the three avian species. These factors include muscle pH, concentration of heme pigments, fatty acid unsaturation, inhibitors of lipid oxidation in the aqueous fraction of the muscle, tocopherol content in lipid phases and depletion rates of tocopherol. These factors should be considered when developing strategies to inhibit lipid oxidation in muscle foods. The relatively high content of ,-tocopherol in chicken muscle compared with turkey should be a subject of further research to better understand the mechanisms by which certain animal species preferentially deposit the molecule into muscle. [source]


Citicoline: neuroprotective mechanisms in cerebral ischemia

JOURNAL OF NEUROCHEMISTRY, Issue 1 2002
Rao Muralikrishna Adibhatla
Abstract Cytidine-5,-diphosphocholine (citicoline or CDP-choline), an intermediate in the biosynthesis of phosphatidylcholine (PtdCho), has shown beneficial effects in a number of CNS injury models and pathological conditions of the brain. Citicoline improved the outcome in several phase-III clinical trials of stroke, but provided inconclusive results in recent clinical trials. The therapeutic action of citicoline is thought to be caused by stimulation of PtdCho synthesis in the injured brain, although the experimental evidence for this is limited. This review attempts to shed some light on the properties of,citicoline that are responsible for its effectiveness. Our studies in transient cerebral ischemia suggest that citicoline might enhance reconstruction (synthesis) of PtdCho and sphingomyelin, but could act by inhibiting the destructive processes (activation of phospholipases). Citicoline neuroprotection may,include: (i) preserving cardiolipin (an exclusive inner mitochondrial membrane component) and sphingomyelin; (ii),preserving the arachidonic acid content of PtdCho and phosphatidylethanolamine; (iii) partially restoring PtdCho levels; (iv) stimulating glutathione synthesis and glutathione reductase activity; (v) attenuating lipid peroxidation; and (vi),restoring Na+/K+ -ATPase activity. These observed effects,of citicoline could be explained by the attenuation of,phospholipase A2 activation. Based on these findings, a singular unifying,mechanism has been hypothesized. Citicoline also provides choline for synthesis of neurotransmitter acetylcholine, stimulation of tyrosine hydroxylase activity and dopamine release. [source]


Regulation of Tyrosine Hydroxylase Activity and Phosphorylation at Ser19 and Ser40 via Activation of Glutamate NMDA Receptors in Rat Striatum

JOURNAL OF NEUROCHEMISTRY, Issue 6 2000
Niklas Lindgren
Abstract: The activity of tyrosine hydroxylase, the rate-limiting enzyme in the biosynthesis of dopamine, is stimulated by phosphorylation. In this study, we examined the effects of activation of NMDA receptors on the state of phosphorylation and activity of tyrosine hydroxylase in rat striatal slices. NMDA produced a time-and concentration-dependent increase in the levels of phospho-Ser19 -tyrosine hydroxylase in nigrostriatal nerve terminals. This increase was not associated with any changes in the basal activity of tyrosine hydroxylase, measured as DOPA accumulation. Forskolin, an activator of adenylyl cyclase, stimulated tyrosine hydroxylase phosphorylation at Ser40 and caused a significant increase in DOPA accumulation. NMDA reduced forskolin-mediated increases in both Ser40 phosphorylation and DOPA accumulation. In addition, NMDA reduced the increase in phospho-Ser40 -tyrosine hydroxylase produced by okadaic acid, an inhibitor of protein phosphatase 1 and 2A, but not by a cyclic AMP analogue, 8-bromo-cyclic AMP. These results indicate that, in the striatum, glutamate decreases tyrosine hydroxylase phosphorylation at Ser40 via activation of NMDA receptors by reducing cyclic AMP production. They also provide a mechanism for the demonstrated ability of NMDA to decrease tyrosine hydroxylase activity and dopamine synthesis. [source]


Inhibition of CYP3A-mediated oxidation in human hepatic microsomes by the dietary derived complex phenol, gallic acid

JOURNAL OF PHARMACY AND PHARMACOLOGY: AN INTERNATI ONAL JOURNAL OF PHARMACEUTICAL SCIENCE, Issue 2 2002
Ieva Stupans
Plant polyphenols, such as gallic acid, have been reported to have a range of biological activities including antimutagenic effects. Previously, we reported that gallic acid (3,4,5-trihydroxy-benzoic acid), an agent found in wine and tea, inhibits androstenedione 6,-hydroxylase activity (Ki 70 ,M), a cytochrome P450 (CYP3A) marker in human liver microsomes. The preincubation of gallic acid (100 ,M) with human liver microsomes in the absence of NADPH, as compared with the presence of NADPH, before assay of androstenedione 6,-hydroxylase activity significantly increased the inhibitory effects of the gallic acid (0.03 ± 0.03 nmol (mg microsomal protein),1 min,1 compared with 0.20 ± 0.06 nmol (mg microsomal protein),1 min,1 (P< 0.05)). The antioxidant ascorbic acid and the radical scavenger glutathione prevented this observed increase in inhibition. Removal of gallic acid-derived products from the incubation completely restored CYP3A activity. In contrast, the activities of CYP1A and CYP2E, and non-CYP mediated reductive microsomal 17,-hydroxysteroid dehydrogenase activity were refractory to inhibition by gallic acid. [source]


Interaction of Drugs and Chinese Herbs: Pharmacokinetic Changes of Tolbutamide and Diazepam Caused by Extract of Angelica dahurica

JOURNAL OF PHARMACY AND PHARMACOLOGY: AN INTERNATI ONAL JOURNAL OF PHARMACEUTICAL SCIENCE, Issue 8 2000
KAZUHISA ISHIHARA
The inhibitory effects of Angelica dahurica root extract on rat liver microsomal cytochrome P450 and drug-drug interactions were studied. The 2,- and 16,-hydroxylase activity of testosterone were most strongly inhibited, with 17.2% and 28.5% of their activity remaining, respectively, after oral administration of A. dahurica extract at a 1 g kg,1 dose. 6,-Hydroxylase activity was also inhibited, with 70% of its activity remaining, under the same conditions. In addition, treatment with the extract inhibited the metabolism of tolbutamide, nifedipine and bufuralol. These results showed that the extract inhibited the various isoforms of cytochrome P450 such as CYP2C, CYP3A and CYP2D1. The A. dahurica extract delayed elimination of tolbutamide after intravenous administration at a 10 mg kg,1 dose to rats. Thus, the extract altered the liver intrinsic clearance. It had little effect, however, on the pharmacokinetic parameters of diazepam after intravenous administration at 10 mg kg,1. Since diazepam showed high clearance, it underwent hepatic blood flow rate-limited metabolism. Therefore, the change of intrinsic clearance had little effect on hepatic clearance. However, the Cmax value after oral administration of diazepam with extract treatment was four times that with non-treatment. It was suggested that the first-pass effect was changed markedly by the extract. High-dose (1 g kg,1), but not low dose (0.3 g kg,1), administration of A. dahurica extract increased significantly the duration of rotarod disruption following intravenous administration of diazepam at 5 mg kg,1. It was concluded that administration of A. dahurica extract has the potential to interfere with the metabolism, by liver cytochrome P450, of other drugs. [source]


Effects of Light and Dark Beer on Hepatic Cytochrome P-450 Expression in Male Rats Receiving Alcoholic Beverages as Part of Total Enteral Nutrition

ALCOHOLISM, Issue 5 2005
Mats Hidestrand
Background: Alcoholic beverages contain many congeners in addition to ethanol. Therefore, consumption of alcoholic beverages may have considerably different effects on expression of hepatic microsomal monooxygenases than the relatively selective induction of cytochrome P-450 (CYP) 2E1 observed after consumption of pure ethanol. Methods: In the current study, we compared the effects of two beers: lager (a light roasted beer) and stout (a dark roasted beer) with those of an equivalent amount of pure ethanol on hepatic CYP expression. Beer or pure ethanol was part of a complete total enteral nutrition diet that was infused intragastrically into male Sprague Dawley rats for 21 days. At the end of the infusion period, rats were euthanized, and liver and intestinal microsomes were prepared. Expression and activity of CYP1A1/2, CYP2B1, CYP2E1, CYP3A, and CYP4A were assessed by Western immunoblotting and by using CYP enzyme,specific substrates, respectively. Results: mRNA and protein levels of CYP4A1 were elevated only in stout-treated animals. However, lauric acid 12-hydroxylase activity (a CYP4A-specific activity) was reduced (p, 0.05) in microsomes from lager- and stout-fed rats. After oxidation with potassium ferricyanide, this activity was significantly increased in microsomes from stout-fed animals. The relative expression of CYP2E1 and CYP2B1 and the activities toward p -nitrophenol, pentoxyresorufin, or benzyloxyresorufin did not differ between beers or compared with pure ethanol or controls. However, the mean expression of CYP1A2, CYP3A, and CYP4A apoproteins was greater in liver microsomes from stout-infused rats than in those from lager-infused rats, ethanol-infused rats, and diet controls (p, 0.05). In addition, although no significant differences were observed in ethoxyresorufin O-dealkylase (EROD), methoxyresorufin O-dealkylase (MROD), midazolam, or testosterone hydroxylase activities between groups, stout-infused rats had greater hepatic microsomal erythromycin N -demethylase activity than other groups (p, 0.05). Conclusions: Stout contains components other than ethanol that interact in a complex fashion with the monooxygenase system. [source]


3-Ketosteroid 9,-hydroxylase is an essential factor in the pathogenesis of Mycobacterium tuberculosis

MOLECULAR MICROBIOLOGY, Issue 1 2010
Yanmin Hu
Summary Mycobacterium tuberculosis H37Rv contains the kshA (Rv3526) and kshB (Rv3571) genes, encoding 3-ketosteroid 9,-hydroxylase (KSH). Consistent with their predicted roles, the ,kshA and ,kshB deletion mutants of M. tuberculosis H37Rv were unable to use cholesterol and 4-androstene-3,17-dione as primary carbon and energy sources. Interestingly, ,kshA and ,kshB mutants were also unable to metabolize the steroid substrate 5,-androstane-3,17-dione, whereas wild-type M. tuberculosis H37Rv could. The deletion of either of these genes lead to rapid death of the microorganism in murine infection models and in macrophages, showing that kshA and kshB are essential factors for M. tuberculosis pathogenesis. Penta-acylated trehalose (PAT) biosynthesis was altered in the ,kshB mutant, but not the ,kshA mutant. The ,kshB mutant synthesizes all other types of lipids. The ,kshB mutant had a thickened outer layer in its cell wall. KshB thus appears to be involved in multiple processes, probably as a reductase of different oxygenases. We conclude that an impaired 3-ketosteroid 9,-hydroxylase activity is the cause of the highly attenuated phenotype of our M. tuberculosis H37Rv mutants. [source]


20-hydroxyecdysone and juvenile hormone influence tyrosine hydroxylase activity in Drosophila females under normal and heat stress conditions

ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY (ELECTRONIC), Issue 4 2009
N. E. Gruntenko
Abstract The effects of exogenous 20-hydroxyecdysone (20E) and the juvenile hormone (JH) on the activity of the tyrosine hydroxylase (TH), the first and rate-limiting DA biosynthetic enzyme, has been studied in young females of wild type D. virilis and D. melanogaster under normal conditions and under heat stress (38°C). Both 20E feeding of the flies and JH application led to a substantial rise in TH activity. A rise in JH and 20E levels was found not to prevent the response of TH to heat stress, but to change the intensity of its response to the stress exposure. Putative mechanisms of regulation of DA level by 20E and JH in Drosophila females are discussed. © 2009 Wiley Periodicals, Inc. [source]


Catecholamine synthesis and metabolism in the central nervous system of mice lacking ,2 -adrenoceptor subtypes

BRITISH JOURNAL OF PHARMACOLOGY, Issue 3 2009
MA Vieira-Coelho
Background and purpose:, This study investigates the role of ,2 -adrenoceptor subtypes, ,2A, ,2B and ,2C, on catecholamine synthesis and catabolism in the central nervous system of mice. Experimental approach:, Activities of the main catecholamine synthetic and catabolic enzymes were determined in whole brains obtained from ,2A -, ,2B - and ,2C -adrenoceptor knockout (KO) and C56Bl\7 wild-type (WT) mice. Key results:, Although no significant differences were found in tyrosine hydroxylase activity and expression, brain tissue levels of 3,4-dihydroxyphenylalanine were threefold higher in ,2A - and ,2C -adrenoceptor KO mice. Brain tissue levels of dopamine and noradrenaline were significantly higher in ,2A and ,2CKOs compared with WT [WT: 2.8 ± 0.5, 1.1 ± 0.1; ,2AKO: 6.9 ± 0.7, 1.9 ± 0.1; ,2BKO: 2.3 ± 0.2, 1.0 ± 0.1; ,2CKO: 4.6 ± 0.8, 1.5 ± 0.2 nmol·(g tissue),1, for dopamine and noradrenaline respectively]. Aromatic L-amino acid decarboxylase activity was significantly higher in ,2A and ,2CKO [WT: 40 ± 1; ,2A: 77 ± 2; ,2B: 40 ± 1; ,2C: 50 ± 1, maximum velocity (Vmax) in nmol·(mg protein),1·h,1], but no significant differences were found in dopamine ,-hydroxylase. Of the catabolic enzymes, catechol- O -methyltransferase enzyme activity was significantly higher in all three ,2KO mice [WT: 2.0 ± 0.0; ,2A: 2.4 ± 0.1; ,2B: 2.2 ± 0.0; ,2C: 2.2 ± 0.0 nmol·(mg protein),1·h,1], but no significant differences were found in monoamine oxidase activity between all ,2KOs and WT mice. Conclusions and implications:, In mouse brain, deletion of ,2A - or ,2C -adrenoceptors increased cerebral aromatic L-amino acid decarboxylase activity and catecholamine tissue levels. Deletion of any ,2 -adrenoceptor subtypes resulted in increased activity of catechol- O -methyltransferase. Higher 3,4-dihydroxyphenylalanine tissue levels in ,2A and ,2CKO mice could be explained by increased 3,4-dihydroxyphenylalanine transport. [source]


Stress, norepinephrine and depression

ACTA NEUROPSYCHIATRICA, Issue 4 2002
Brian E. Leonard
Experimental and clinical evidence implicates stress as a major predisposing factor in depression and other severe psychiatric disorders. In this review, evidence is presented to show how the impact of stress on the central sympathetic system leads to changes in the endocrine, immune and neurotransmitter axes which underlie the main clinical symptoms of depression. Thus it can be shown that the noradrenergic system is dysfunctional in depression, a situation which reflects the chronic hypersecretion of glucocorticoids and inflammatory mediators within the brain in addition to an enhanced activity of the locus ceruleus. With regard to the actions of antidepressants in modulating the stress response and alleviating depression it is now evident that, irrespective of the presumed specificity of the antidepressants for the noradrenergic or serotonergic systems, they all normalize noradrenergic function. This action is due partly to the regulation of tyrosine hydroxylase activity in the locus ceruleus but also enhances neuronal sprouting which counteracts the neurodegenerative effects of chronic stress. [source]