Home About us Contact | |||
Hydroxyl Moiety (hydroxyl + moiety)
Selected AbstractsIncreased antitumor potential of the raloxifene prodrug, raloxifene diphosphateINTERNATIONAL JOURNAL OF CANCER, Issue 9 2008Yoshinori Okamoto Abstract Raloxifene (RAL) significantly reduced the incidence of breast cancer in women at high risk of developing the disease. Unlike tamoxifen (TAM), an increased incidence of endometrial cancer was not observed in women treated with RAL. However, RAL, having two hydroxyl moieties, can be conjugated rapidly through phase II metabolism and excreted, making it difficult to achieve adequate bioavailability by oral administration in humans. As a result, higher doses must be administered to obtain an efficacy equivalent to that achieved with TAM. To improve oral bioavailability and antitumor potential, RAL diphosphate was prepared as a prodrug. RAL diphosphate showed several orders of magnitude lower binding potential to both ER, and ER, and weak antiproliferative potency on cultured human MCF-7 and ZR-75-1 breast cancer cells, as compared to RAL. However, RAL diphosphate has a much higher bioavailability than RAL, endowing it with higher antitumor potential than RAL against both 7,12-dimethylbenz(a)anthracene-induced mammary carcinoma in rats and human MCF-7 breast cancer implanted in athymic nude mice. The RAL prodrug may provide greater clinical benefit for breast cancer therapy and prevention. © 2008 Wiley-Liss, Inc. [source] Structure,activity relationships for gene activation oestrogenicity: Evaluation of a diverse set of aromatic chemicalsENVIRONMENTAL TOXICOLOGY, Issue 1 2002T. Wayne Schultz Abstract Structure,activity relationships for oestrogenicity were developed based on 120 aromatic chemicals evaluated in the Saccharomyces cerevisiae -based Lac -Z reporter assay. Relative gene activation was compared to 17,-estradiol and varied over eight orders of magnitude. Analysis of the data compared to 17,-estradiol identified three structural criteria that were related to xenoestrogen activity and potency: (1) the hydrogen-bonding ability of the phenolic ring mimicking the A-ring, (2) a hydrophobic centre similar in size and shape to the B- and C-rings, and (3) a hydrogen-bond donor mimicking the 17,-hydroxyl moiety of the D-ring, especially with an oxygen-to-oxygen distance similar to that between the 3- and 17,-hydroxyl groups of 17,-estradiol. Binding data were segregated into activity clusters including strong, moderate, weak, and detectable gene expression, and those compounds that were inactive. The hydrogen-bonding ability of hydroxy group in the 3-position on 17,-estradiol was observed to be essential for gene activation. Compounds with a 4-hydroxyl substituted benzene ring and a hydrophobic moiety of size and shape equivalent to the B-ring of 17,-estradiol were generally observed to be weakly active compounds. Moderately active compounds have a 4-hydroxyl substituted benzene ring with a hydrophobic moiety equivalent in size and shape to the B- and C-ring of 17,-estradiol, or have a high hydrogen-bond donor capacity owing to the presence of halogens on a nonphenolic ring. Strongly active compounds, similar to 4,4,-diethylethylene bisphenol (DES), possess the same hydrophobic ring structure as described for moderately active compounds and an additional hydroxyl group with an oxygen-to-oxygen distance close to that exhibited by the 3- and 17-hydroxyl groups of 17,-estradiol. © 2002 by Wiley Periodicals, Inc. Environ Toxicol 17: 14,23, 2002 [source] Determination of enzyme mechanisms by molecular dynamics: Studies on quinoproteins, methanol dehydrogenase, and soluble glucose dehydrogenasePROTEIN SCIENCE, Issue 8 2004Swarnalatha Y. Reddy Abstract Molecular dynamics (MD) simulations have been carried out to study the enzymatic mechanisms of quinoproteins, methanol dehydrogenase (MDH), and soluble glucose dehydrogenase (sGDH). The mechanisms of reduction of the orthoquinone cofactor (PQQ) of MDH and sGDH involve concerted base-catalyzed proton abstraction from the hydroxyl moiety of methanol or from the 1-hydroxyl of glucose, and hydride equivalent transfer from the substrate to the quinone carbonyl carbon C5 of PQQ. The products of methanol and glucose oxidation are formaldehyde and glucolactone, respectively. The immediate product of PQQ reduction, PQQH, [,HC5(O,) ,C4( = O) ,] and PQQH [,HC5(OH) ,C4( = O) ,] converts to the hydroquinone PQQH2 [,C5(OH) = C4(OH) ,]. The main focus is on MD structures of MDH , PQQ , methanol, MDH , PQQH,, MDH , PQQH, sGDH , PQQ , glucose, sGDH , PQQH, (glucolactone, and sGDH , PQQH. The reaction PQQ , PQQH, occurs with Glu 171,CO2, and His 144,Im as the base species in MDH and sGDH, respectively. The general-base-catalyzed hydroxyl proton abstraction from substrate concerted with hydride transfer to the C5 of PQQ is assisted by hydrogen-bonding to the C5 = O by Wat1 and Arg 324 in MDH and by Wat89 and Arg 228 in sGDH. Asp 297,COOH would act as a proton donor for the reaction PQQH, , PQQH, if formed by transfer of the proton from Glu 171,COOH to Asp 297,CO2, in MDH. For PQQH , PQQH2, migration of H5 to the C4 oxygen may be assisted by a weak base like water (either by crystal water Wat97 or bulk solvent, hydrogen-bonded to Glu 171,CO2, in MDH and by Wat89 in sGDH). [source] Structural characterization and identification of ecdysteroids from Sida rhombifolia L. in positive electrospray ionization by tandem mass spectrometryRAPID COMMUNICATIONS IN MASS SPECTROMETRY, Issue 16 2008Yan-Hong Wang Seven ecdysteroids isolated from Sida rhombifolia L. were studied by electrospray ionization multi-stage tandem mass spectrometry (ESI-MSn) in the positive ion mode using an ion trap analyzer and high-performance liquid chromatography coupled with a diode-array detector (HPLC/DAD). The HPLC experiments were performed by means of a reversed-phase C18 column and a binary mobile phase system consisting of water (containing 0.05% formic acid) and acetonitrile (containing 0.05% formic acid) under gradient elution conditions. According to mass spectral features and the substitution at C-2, C-20, C-24 and C-25, ecdysteroids in S. rhombifolia were classified into three sub-groups. Structural identification of these three sub-groups of ecdysteroids was established by LC/multi-stage ion trap mass spectrometry on-line or off-line. The fragmentation patterns of ecdysteroids yielded ions of successive loss of 1,4 water molecules. Furthermore, ions corresponding to the complete loss of the side chain at C-17 will help to identify the sub-groups of ecdysteroids in addition to containing a hydroxyl moiety at one of the above-mentioned positions. Based on the HPLC retention behavior, the diagnostic UV spectra and the molecular structural information provided by ESI-MSn spectra, a total of nine naturally occurring ecdysteroids were identified, of these two are identified for the first time in S. rhombifolia. Copyright © 2008 John Wiley & Sons, Ltd. [source] |