Home About us Contact | |||
Hydrothermally
Selected AbstractsHYDROTHERMALLY FLUORITIZED ORDOVICIAN CARBONATES AS RESERVOIR ROCKS IN THE TAZHONG AREA, CENTRALTARIM BASIN, NW CHINAJOURNAL OF PETROLEUM GEOLOGY, Issue 1 2006Zhijun Jin Reservoir rocks at the Tazhong 45 oil pool, central Tarim Basin, consist of fluoritized carbonate strata of Middle - Late Ordovician age. Petrological observations indicate that the fluorite replaces calcite. Several other hydrothermal minerals including pyrite, quartz, sphalerite and chlorite accompany the fluorite. Two generations of fluid inclusions are present in the fluorite. Homogenization temperatures (Th) for primary inclusions are mostly between 260°C and 310°C and represent the temperature of the hydrothermal fluid responsible for fluorite precipitation. Th for secondary inclusions range from 100°C to 130°C, and represent the hydrocarbon charging temperature as shown by the presence of hydrocarbons trapped in some secondary inclusions. The mineral assemblage and the homogenization temperatures of the primary fluid inclusions indicate that the precipitation of fluorite is related to hydrothermal activity in the Tazhong area. Strontium isotope analyses imply that the hydrothermal fluids responsible for fluorite precipitation are related to late-stage magmatic activity, and felsic magmas were generated by mixing of mafic magma and crustal materials during the Permian. Theoretical calculations show that the molecular volume of a carbonate rock decreases by 33.5% when calcite is replaced by fluorite, and the volume shrinkage can greatly enhance reservoir porosity by the formation of abundant intercrystalline pores. Fluoritization has thus greatly enhanced the reservoir quality of Ordovician carbonates in the Tazhong 45 area, so that the fluorite and limestone host rocks have become an efficient hydrocarbon reservoir. According to the modelled burial and thermal history of the Tazhong 45 well, and the homogenization temperatures of secondary fluid inclusions in the fluorite, hydrocarbon charging at the Tazhong 45 reservoir took place in the Tertiary. [source] Geological and Geochemical Characteristics of the Hydrothermal Clay Alteration in South KoreaRESOURCE GEOLOGY, Issue 4 2000Sang-Mo KOH Abstract: Hydrothermally altered areas forming pyrophyllite-kaolin-sericite-alunite deposits are distributed in Chonnam and Kyongsang areas, Cretaceous volcanic field of the Yuchon Group. The Chonnam alteration area is located within depression zone which is composed of volcanic and granitic rocks of late Cretaceous age. The clay deposits of this area show the genetic relationship with silicic lava domes. The Kyongsang alteration area is mainly distributed within Kyongsang Basin comprising volcanic, sedimentary and granitic rocks of Cretaceous and Tertiary age. Most of the clay deposits of this area are closely related to cauldrons. Paleozoic clay deposit occurs in the contact zone between Precambrian Hongjesa granite gneiss and Paleozoic Jangsan quartzite of Choson Supergroup. Cretaceous igneous rocks of the both alteration areas belong to high K calc-alkaline series formed in the volcanic arc of continental margin by subduction-related magmatism. Chonnam igneous rocks show more enrichment of crustal components such as K, La, Ce, Sm, Nd and Ba, higher (La/Yb)cn ratio, and higher initial 87Sr/86Sr ratio (0. 708 to 0. 712) than those of Kyongsang igneous rocks. This might be due to the difference of degree of crustal contamination during Cretaceous magmatism. The most characteristic alteration minerals of Chonnam clay deposits are alunite, kaolin, quartz, pyrophyllite and diaspore which were formed by acidic solution. Those of Kyongsang clay deposits are sericite, quartz and pyrophyllite which were formed by weak acid and neutral solution. The formation ages of the clay deposits of two alteration areas range from 70. 1 to 81. 4 Ma and 39. 7 to 79. 4 Ma, respectively. The Daehyun clay deposit in Ponghwa area of Kyongsang province shows the alteration age range from 290 to 336 Ma. This result shows the different alteration episode from the hydrothermal alteration of Cretaceous to early Tertiary in the Kyongsang and Chonnam alteration areas. These data indicate, at least, three hydrothermal activities of Tertiary (middle to late Eocene), late Cretaceous (Santonian to Maastrichtian) and Paleozoic Carboniferous Periods in South Korea. [source] Structure, phase transitions and ionic conductivity of K3NdSi6O15·xH2O.ACTA CRYSTALLOGRAPHICA SECTION B, Issue 3 2000-K3NdSi6O15·2H2O, its polymorphs Hydrothermally grown crystals of ,-K3NdSi6O15·2H2O, potassium neodymium silicate, have been studied by single-crystal X-ray methods. The compound crystallizes in space group Pbam, contains four formula units per unit cell and has lattice constants a = 16.008,(2), b = 15.004,(2) and c = 7.2794,(7),Å, giving a calculated density of 2.683,Mg,m,3. Refinement was carried out with 2161 independent structure factors to a residual, R(F), of 0.0528 [wR(F2) = 0.1562] using anisotropic temperature factors for all atoms other than those associated with water molecules. The structure is based on highly corrugated (Si2O52,), layers which can be generated by the condensation of xonotlite-like ribbons, which can, in turn, be generated by the condensation of wollastonite-like chains. The silicate layers are connected by Nd octahedra to form a three-dimensional framework. Potassium ions and water molecules are located in interstitial sites within this framework, in particular, within channels that extend along [001]. Aging of as-grown crystals at room temperature for periods of six months or more results in an ordering phenomenon that causes the length of the c axis to double. In addition, two phase transitions were found to occur upon heating. The high-temperature transformations, investigated by differential scanning calorimetry, thermal gravimetric analysis and high-temperature X-ray diffraction, are reversible, suggesting displacive transformations in which the layers remain intact. Conductivity measurements along all three crystallographic axes showed the conductivity to be greatest along [001] and further suggest that the channels present in the room-temperature structure are preserved at high temperatures so as to serve as pathways for easy ion transport. Ion-exchange experiments revealed that silver can readily be incorporated into the structure. [source] Structure, phase transitions and ionic conductivity of K3NdSi6O15·xH2O.ACTA CRYSTALLOGRAPHICA SECTION B, Issue 3 2000Hydrothermally grown crystals of ,-K3NdSi6O15, potassium neodymium silicate, have been studied by single-crystal X-ray methods. Under appropriate conditions, the compound crystallizes in space group Bb21m and has lattice constants a = 14.370,(2), b = 15.518,(2) and c = 14.265,(2),Å. There are 30 atom sites in the asymmetric unit of the basic structure. With eight formula units per unit cell, the calculated density is 2.798,Mg,m,3. Refinement was carried out to a residual, wR(F2), of 0.1177 [R(F) = 0.0416] using anisotropic temperature factors for all atoms. The structure is based on (Si2O52,), layers, connected by Nd polyhedra to form a three-dimensional framework. Potassium ion sites, some of which are only partially occupied, are located within channels that run between the silicate layers. The silica,neodymia framework of ,-K3NdSi6O15, in particular the linkages formed between the silicate layers and Nd polyhedra, bears some similarities to that of the essentially isocompositional phase ,-K3NdSi6O15·2H2O. In both, the silicate layers are corrugated so as to accommodate a simple cubic array of NdO6 octahedra with lattice constant , 7.5,Å. Furthermore, the Si2O5 layers in ,-K3NdSi6O15 are topologically identical to those of the mineral sazhinite, Na2HCeSi6O15. Although ,-K3NdSi6O15 and sazhinite are not isostructural, the structures of each can be described as slight distortions of a high-symmetry parent structure with space group Pbmm. [source] Structural and spectroscopic study of Mg13.4(OH)6(HVO4)2(H0.2VO4)6CRYSTAL RESEARCH AND TECHNOLOGY, Issue 11 2008Abstract Single-crystals of the polar compound magnesium hydrogen vanadate(V), Mg13.4(OH)6(HVO4)2(H0.2VO4)6, were synthesized hydrothermally. It represents the first hydrogen vanadate(V) among inorganic compounds. Its structure was determined by single-crystal X-ray diffraction [space group P 63mc, a = 12.9096(2), c = 5.0755(1) Å, V = 732.55(2) ų, Z = 1]. The crystal structure of Mg13.4(OH)6(HVO4)2(H0.2VO4)6 consists of well separated, vacancy-interrupted chains of face sharing Mg2O6 octahedra, with short Mg2,Mg2 distances of 2.537(1) Å, embedded in a porous magnesium vanadate 3D framework having the topology of the zeolite cancrinite. All three hydrogen positions in the structure were confirmed by FTIR spectroscopy. (© 2008 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim) [source] Structural diversity of bacterial communities in a heavy metal mineralized granite outcropENVIRONMENTAL MICROBIOLOGY, Issue 3 2006Deirdre Gleeson Summary This laboratory study of a variably mineralized and hydrothermally altered granite outcrop investigated the influences of rock-surface chemistry and heavy metal content on resident bacterial populations. Results indicated that elevated heavy metal concentrations had a profound impact on bacterial community structure, with strong relationships found between certain ribotypes and particular chemical/heavy metal elements. Automated ribosomal intergenic sequence analysis (ARISA) was used to assess the nature and extent of bacterial diversity, and this was combined with chemical analysis and multivariate statistics to identify the main geochemical factors influencing bacterial community structure. A randomization test revealed significant changes in bacterial structure between samples, while canonical correspondence analysis (CCA) related each individual ARISA profile to linear combinations of the chemical variables (mineralogy, major element and heavy metal concentrations) revealing the geochemical factors that correlated with changes in the ARISA data. anova was performed to further explore interactions between individual ribotypes and chemical/heavy metal composition, and revealed that a high proportion of ribotypes correlated significantly with heavy metals. [source] Tartatric Acid and L -Cysteine Synergistic-Assisted Synthesis of Antimony Trisulfide Hierarchical Structures in Aqueous SolutionEUROPEAN JOURNAL OF INORGANIC CHEMISTRY, Issue 35 2009Jun Pan Abstract Alveolate amorphous Sb2S3 microspheres about 2 ,m in diameter were hydrothermally synthesized in aqueous solution without the use of a surfactant at 180 °C by using SbCl3, L -cysteine, and tartaric acid as starting materials. After annealing at 250 °C for 3 h under a nitrogen atmosphere, polycrystalline Sb2S3 hollow spheres were obtained. The morphology, structure, and phase composition of alveolate Sb2S3 microspheres were characterized by X-ray diffraction, field-emission scanning electron microscopy, energy dispersive X-ray analysis, and X-ray photoelectron spectroscopy. It was demonstrated that tartaric acid and L -cysteine play a key role in the formation of such hierarchical structures. In addition, the possible aggregation mechanism was proposed to illustrate the formation of Sb2S3 microspheres on the basis of the experimental results and analyses.(© Wiley-VCH Verlag GmbH & Co. KGaA, 69451 Weinheim, Germany, 2009) [source] A New 2-D Network Containing {As4V16O42(H2O)} Cluster UnitsEUROPEAN JOURNAL OF INORGANIC CHEMISTRY, Issue 34 2009Jian Zhou Abstract A new polyoxometalate [Cd(dien)]2[Cd(dien)(H2O)]2[As4V16O42(H2O)]·2H2O (1, dien = diethylenetriamine) has been hydrothermally synthesized and structurally characterized. 1 is the first example of 2-D network based on the linkages of the rare {As4V16O42(H2O)} cluster units and two types of cadmium(II) complex fragments. The magnetic susceptibility shows the antiferromagnetic interaction between VIV cations in 1. (© Wiley-VCH Verlag GmbH & Co. KGaA, 69451 Weinheim, Germany, 2009) [source] Two Hexanickel-Substituted Keggin-Type Germanotungstates,EUROPEAN JOURNAL OF INORGANIC CHEMISTRY, Issue 24 2008Jun-Wei Zhao Abstract Two new inorganic,organic hybrid germanotungstates built from trivacant Keggin fragments and in situ generated hexanickel clusters [Ni(en)2]0.5[{Ni6(,3 -OH)3(en)3(H2O)6}(B-,-GeW9O34)]·3H2O (1) and [{Ni6(,3 -OH)3(dap)3(H2O)6}(B-,-GeW9O34)]·H3O·4H2O (2) (en = ethylenediamine and dap = 1,2-diaminopropane) were hydrothermally synthesized and characterized by IR spectroscopy, elemental analysis, thermogravimetric analysis, single-crystal X-ray diffraction and magnetic analysis. Compound 1 crystallizes in the monoclinic space group P21/n; whereas compound 2 crystallizes in the monoclinic space group P21/c. Single-crystal X-ray diffraction indicates that both contain a hexa-NiII -substituted trivacant Keggin unit [{Ni6(,3 -OH)3(L)3(H2O)6}(B-,-GeW9O34)], (L = en or dap). Magnetic susceptibility measurements show the presence of ferromagnetic coupling interactions within the hexa-NiII clusters for 1 and 2. (© Wiley-VCH Verlag GmbH & Co. KGaA, 69451 Weinheim, Germany, 2008) [source] Mu-35: A Fluorogallophosphate Obtained by In Situ Generation of the TemplateEUROPEAN JOURNAL OF INORGANIC CHEMISTRY, Issue 25 2007Louwanda Lakiss Abstract A two-dimensional microporous fluorogallophosphate, named Mu-35, closely related to ULM-8, was hydrothermally synthesized by in situ generation of the structure-directing agent. The precursor of the structure-directing agent is ethylformamide, which is generated in situ by decomposition, and goes on to form ethylamine molecules that act as templates in the medium used for the synthesis. The fluorogallophosphate Mu-35 (Mu is Mulhouse), Ga3(PO4)2(HPO4)F3(C2H8N)2(C2H7N)0.5 (Z = 8), crystallizes in the orthorhombic space group Pbcn with the following unit cell parameters: a = 22.117(1), b = 17.3740(8), c = 10.1550(4) Å. The structure of fluorogallophosphate Mu-35 was determined from single-crystal XRD data. It exhibits anionic layers composed of an unusual arrangement of three-, five-, and eight-membered rings (MR) [Ga2PO2F, Ga3P2O4F, and Ga3P3O8, respectively], and intercalated by protonated and nonprotonated ethylamine molecules. Mu-35 was also characterized by powder XRD, SEM, elemental and thermal analyses, and solid-state NMR spectroscopy (1H, 13C, 19F, and 31P MAS and 1H- 31P HETCOR experiments). (© Wiley-VCH Verlag GmbH & Co. KGaA, 69451 Weinheim, Germany, 2007) [source] Crystal Structure and Surface Photovoltage Properties of MnII Coordination SupramoleculesEUROPEAN JOURNAL OF INORGANIC CHEMISTRY, Issue 24 2007Li-Ping Sun Abstract Three MnII coordination supramolecular complexes [Mn(pdc)(H2O)]n1, {[Mn(pdc) (phen)(H2O)]·3H2O}n2, and {[Mn(cyan)2(H2O)4]·2HCl·2(Hcyan)} 3 (H2pdc = pyridine-2,3-dicarboxylic acid, Hcyan = cyanuric acid, phen = 1,10-phenanthroline) were hydrothermally synthesized and their structures determined by single-crystal X-ray diffraction. The pdc group in complex 1 bridges the MnII ions to form an infinite 3D structure. In complex 2, the MnII ion is bridged to a 1D infinite chain by pdc groups and the chain is further connected to a 2D structure by hydrogen bonds. The 3D structure of complex 3 is formed by hydrogen bonds and O···Cl weak interactions. Surface photovoltage spectroscopy (SPS) of complexes 1,3 indicate that they all possess positive SPV response in the range of 300,800 nm and show p -type semiconductor characteristic. The intensities of the SPV responses are obviously different, and this can mainly be attributed to the differences in their structures. Field-induced surface photovoltage spectroscopy (FISPS) of complexes 1,3 confirms their p -type semiconductor characteristic.(© Wiley-VCH Verlag GmbH & Co. KGaA, 69451 Weinheim, Germany, 2007) [source] Novel Cadmium(II) Adipate Coordination Polymers with Structural Transformation via Oxalate Ligand: Syntheses, Structures and Fluorescence PropertiesEUROPEAN JOURNAL OF INORGANIC CHEMISTRY, Issue 20 2004Na Hao Abstract Two novel cadmium adipate coordination polymers [Cd{O2C(CH2)4CO2}{1,10-phen}]n (1) and [Cd2(C2O4){O2C(CH2)4CO2(OH2)2}{2,2,-bipy}]·H2O (2) [adipic acid = HO2C(CH2)4CO2H] have been hydrothermally synthesized and characterized by elemental analyses, IR spectroscopy, thermogravimetric analysis and single-crystal X-ray diffraction. Crystallographic data for 1: monoclinic, C2/c, a = 16.186(3) Å, b = 15.487(3) Å, c = 14.052(3) Å, , = 112.73(3)°, Z = 8. Crystal data for 2: monoclinic, Cc, a = 23.448(5) Å, b = 11.826(2) Å, c = 8.3163(17) Å, , = 99.08(3)°, Z = 4. The structural analysis reveals that 1 forms a novel one-dimensional chain in which the binuclear Cd centers are linked by adipate anions. Compound 2 is the first example in which both a 2,2,-bipy ligand and an oxalate group are found in the {M/adipate} system. Compound 2 possesses one-dimensional sine- or cosine-type chains, which are alternately connected together by the oxalate group to form a three-dimensional framework. The structural determination reveals that the introduction of the oxalate ligand causes the dimensional transformation of the compounds. Compounds 1 and 2 show strong fluorescent properties at room temperature. (© Wiley-VCH Verlag GmbH & Co. KGaA, 69451 Weinheim, Germany, 2004) [source] Experimental silicification of the extremophilic Archaea Pyrococcus abyssi and Methanocaldococcus jannaschii: applications in the search for evidence of life in early Earth and extraterrestrial rocksGEOBIOLOGY, Issue 4 2009F. ORANGE Hydrothermal activity was common on the early Earth and associated micro-organisms would most likely have included thermophilic to hyperthermophilic species. 3.5,3.3 billion-year-old, hydrothermally influenced rocks contain silicified microbial mats and colonies that must have been bathed in warm to hot hydrothermal emanations. Could they represent thermophilic or hyperthermophilic micro-organisms and if so, how were they preserved? We present the results of an experiment to silicify anaerobic, hyperthermophilic micro-organisms from the Archaea Domain Pyrococcus abyssi and Methanocaldococcus jannaschii, that could have lived on the early Earth. The micro-organisms were placed in a silica-saturated medium for periods up to 1 year. Pyrococcus abyssi cells were fossilized but the M. jannaschii cells lysed naturally after the exponential growth phase, apart from a few cells and cell remains, and were not silicified although their extracellular polymeric substances were. In this first simulated fossilization of archaeal strains, our results suggest that differences between species have a strong influence on the potential for different micro-organisms to be preserved by fossilization and that those found in the fossil record represent probably only a part of the original diversity. Our results have important consequences for biosignatures in hydrothermal or hydrothermally influenced deposits on Earth, as well as on early Mars, as environmental conditions were similar on the young terrestrial planets and traces of early Martian life may have been similarly preserved as silicified microfossils. [source] Effects of Structural Variation on the Photocatalytic Performance of Hydrothermally Synthesized BiVO4,ADVANCED FUNCTIONAL MATERIALS, Issue 16 2006J. Yu Abstract Highly crystalline monoclinic scheelite BiVO4 powders are synthesized from aqueous Bi(NO3)3 and NH4VO3 solutions over a wide range of pH by a hydrothermal process. BiVO4 powders with various morphologies, surface textures, and grain shapes are selectively synthesized by adjusting the pH. The dependence of the Raman peak position and intensity on the synthesis conditions indicates that the symmetry distortions in the local structure of the synthesized BiVO4 are affected by the preparation conditions. These variations in the local structure result in the modification of the electronic structure of BiVO4, which results in a blue-shift in the UV-vis absorption spectrum of hydrothermally synthesized BiVO4 in comparison with a well-crystallized sample prepared by homogeneous coprecipitation. The photocatalytic activities for O2 evolution from an aqueous AgNO3 solution under visible-light irradiation are strongly dependent on the pH used in the synthesis. The differences in the photocatalytic activities between BiVO4 samples prepared under various conditions is attributed to the degree of structural distortion, leading to differences in the mobility of photogenerated holes formed in the valence band, which consists of Bi,6s and O,2p orbitals. [source] Magnetic-Field-Induced Growth of Single-Crystalline Fe3O4 Nanowires,ADVANCED MATERIALS, Issue 2 2004J. Wang Single-crystalline nanowires of Fe3O4 hydrothermally synthesized under a magnetic field are reported. The square and hexagonal crystals formed in zero applied field are shown to give way to nanowires as the magnetic field is increased. The Figure shows the situation for a 0.25,T field. The structure and magnetic properties are characterized by transmission electron microscopy, X-ray and electron diffraction, and magnetometry. [source] Production of Resistant Starch by Extrusion Cooking of Acid-Modified Normal-Maize StarchJOURNAL OF FOOD SCIENCE, Issue 7 2009Jovin Hasjim ABSTRACT:, The objective of this study was to utilize extrusion cooking and hydrothermal treatment to produce resistant starch (RS) as an economical alternative to a batch-cooking process. A hydrothermal treatment (110 °C, 3 d) of batch-cooked and extruded starch samples facilitated propagation of heat-stable starch crystallites and increased the RS contents from 2.1% to 7.7% up to 17.4% determined using AOAC Method 991.43 for total dietary fiber. When starch samples were batch cooked and hydrothermally treated at a moisture content below 70%, acid-modified normal-maize starch (AMMS) produced a greater RS content than did native normal-maize starch (NMS). This was attributed to the partially hydrolyzed, smaller molecules in the AMMS, which had greater mobility and freedom than the larger molecules in the NMS. The RS contents of the batch-cooked and extruded AMMS products after the hydrothermal treatment were similar. A freezing treatment of the AMMS samples at ,20 °C prior to the hydrothermal treatment did not increase the RS content. The DSC thermograms and the X-ray diffractograms showed that retrograded amylose and crystalline starch,lipid complex, which had melting temperatures above 100 °C, accounted for the RS contents. [source] Middle Archean ocean ridge hydrothermal metamorphism and alteration recorded in the Cleaverville area, Pilbara Craton, Western AustraliaJOURNAL OF METAMORPHIC GEOLOGY, Issue 7 2007T. SHIBUYA Abstract A hydrothermally metamorphosed greenstone complex, capped by bedded cherts and banded iron formations (BIFs), is exposed in the Cleaverville area, Pilbara Craton, Western Australia. It has been interpreted as an accretionary complex characterized by both a duplex structure and an oceanic plate stratigraphy, and is shown to represent a 3.2 Ga upper oceanic crust. Three metamorphic zones are identified in the basaltic greenstones. The metamorphic grade increases from sub-greenschist facies (zones A and B) to greenschist facies (zone C) under low-pressure conditions. The boundaries between three mineral zones are subparallel to the bedding plane of overlying chert/BIF, and metamorphic temperature increases stratigraphically downward. The zones correspond to the thermal structure of ocean-floor metamorphism, at a mid-ocean ridge. The uppermost greenstone in the study area is more pervasively altered and carbonatized than the modern upper oceanic crust. This indicates the enrichment of CO2 in the metamorphic fluid by which widespread formation of carbonate occurred, compared with a narrow stability region of Ca-Al silicates. It is, therefore, suggested that the Archean hydrothermal alteration played a more important role in fixation of CO2 than present-day ocean-ridge hydrothermal alteration, as an interaction between sea water and oceanic crust. [source] Reaction pathways and reaction progress for the smectite-to-chlorite transformation: evidence from hydrothermally altered metabasitesJOURNAL OF METAMORPHIC GEOLOGY, Issue 1 2002D. Robinson Abstract The transformation from smectite to chlorite has been interpreted as involving either a disequilibrium chlorite/smectite mixed-layering sequence, or an equilibrated discontinuous sequence involving smectite,corrensite,chlorite. Here, analysis of the smectite to chlorite transition in different geothermal systems leads us to propose that the transformation proceeds via three contrasting reaction pathways involving (i) a continuous mixed-layer chlorite/smectite series; (ii) a discontinuous smectite,corrensite,chlorite series and (iii) a direct smectite to chlorite transition. Such contrasting pathways are not in accord with an equilibrium mineral reaction series, suggesting that these pathways record kinetically controlled reaction progress. In the geothermal systems reviewed the style of reaction pathway and degree of reaction progress is closely correlated with intensity of recrystallization, and not to differences in thermal gradients or clay grain size. This suggests a kinetic effect linked to variation in fluid/rock ratios and/or a contrast between advective or diffusive fluid transport. The mode of fluid transport provides a means by which the rates of dissolution/nucleation/growth can control the reaction style and the reaction progress of the smectite to chlorite transition. Slow rates of growth are linked to the first reaction pathway involving mixed-layering, while increasing rates of growth, relative to nucleation, promote the generation of more ordered structures and ultimately lead to the direct smectite to chlorite transition, representative of the third pathway. [source] Pyrazole functionalized organo-ceramic hybrids for noble metal separationsAICHE JOURNAL, Issue 10 2005Jun S. Lee Abstract A series of pyrazole-functional adsorbents is synthesized by sol,gel processing technology and used to study the extraction characteristics for palladium, platinum, and gold chlorides from leaching solutions. An organosilicon compound, N-(trimethoxysilylpropyl)-pyrazole, is synthesized as the functional precursor for these adsorbents. Hydrothermal treatments for the gelled materials alter pore characteristics without chemical property changes. To study adsorptive extraction of Pd(II), Pt(IV), and Au(III) chlorides, the hydrothermally treated adsorbent is used. The experimental results show that this adsorbent has high Pd(II) uptake capacity (1.41 mmol/g), strong selectivity for Pd(II) chloride over Pt(IV) and Au(III) chlorides, and no reactivity for Cu(II) and Fe(II) in 2.0 M HCl solutions. The material also has sustainable stability over repeated metal loading and stripping in a short column. In addition to the experimental studies, the adsorption processes in batch and packed column systems are successfully modeled by using a pore diffusion model and presented. © 2005 American Institute of Chemical Engineers AIChE J, 2005 [source] Synthesis and Photocatalytic Activity of Highly Ordered TiO2 and SrTiO3/TiO2 Nanotube Arrays on Ti SubstratesJOURNAL OF THE AMERICAN CERAMIC SOCIETY, Issue 9 2010Xuming Zhang Highly ordered TiO2 nanotube arrays (TiO2 -NTAs) are produced by electrochemical anodization of a Ti foil in ammonium fluoride (NH4F),ethylene glycol solution. Photocatalytic (PC) investigations indicate that the length of the NTAs plays an important role in their photoactivity. The PC activity increases initially with the NT length and then decreases and the optimum length that yields the highest PC is 6.2 ,m for TiO2 -NTAs. The TiO2 -NTAs are further converted to heterojunction strontium titanate (SrTiO3)/TiO2 -NTAs by a hydrothermal reaction in Sr(OH)2 solution. As the hydrothermal reaction proceeds, more TiO2 is converted into SrTiO3 and the thickness of the SrTiO3 layer increases. The SrTiO3/TiO2 -NTAs exhibit variable PC activities that depend on the hydrothermal reaction time, and the SrTiO3/TiO2 -NTAs hydrothermally treated for 1 h or less have enhanced PC properties. The advantage of combining TiO2 and SrTiO3 stems from the difference in the flatband potential, thereby improving the separation of the photogenerated electron,hole pairs and consequently the PC activity. [source] Hydrothermal Synthesis of Alpha Alumina (,-Al2O3) Powders: Study of the Processing Variables and Growth MechanismsJOURNAL OF THE AMERICAN CERAMIC SOCIETY, Issue 2 2010Wojciech L. Suchanek Alpha alumina (,-Al2O3) powders and ,-Al2O3/boehmite (,-AlOOH) mixtures with controlled ,-AlOOH contents were synthesized hydrothermally under alkaline or acidic conditions at 380°,435°C for 1,10 days, under 6.9,14.5 MPa pressure, from concentrated precursors without stirring. The precursors were formed by mixing different types of aluminum hydroxides with water, and optionally with ,-Al2O3 seeds, hydrogen peroxide, sulfuric acid, dopants (i.e., KMnO4), and/or other additives. The experiments were performed on industrial scale in large production autoclaves. The synthesized ,-Al2O3 powders exhibited up to 100% phase purity, 99.98% chemical purity, equiaxed morphology, low aggregation levels, narrow crystallite size distributions with primary particle sizes ranging between 100 nm and 40 ,m, and high reproducibility. Precursor types, seeds, chemical additives, and temperature/time of the hydrothermal synthesis were found to govern properties of the powders. Different growth mechanisms for nanosized and rough powders are discussed. Results of this study enable the use of hydrothermal ,-Al2O3 powders in a multitude of applications, and make their hydrothermal production a commercial reality. [source] Seeded Crystallization of LeuciteJOURNAL OF THE AMERICAN CERAMIC SOCIETY, Issue 5 2007Yi Zhang The leucite crystallization kinetics from a hydrothermally derived precursor seeded with nano-crystalline leucite was investigated by X-ray diffraction and non-isothermal differential thermal analysis. The nano-crystalline leucite was prepared by high-energy milling of high-purity leucite powder and the leucite precursor was prepared by the hydrothermal method of silica sol, aluminum nitrate, and potassium nitrate. After the seeds were introduced, the crystallization temperature of the precursor was lowered by 100°C and the transition phase kalsilite did not appear during the crystallization process. When the seeded precursor was heat treated at 700°C, a small amount of cubic leucite was stabilized to room temperature. The seeded precursor showed an exothermic peak between 800° and 920°C under different heating rates. The activation energy for the growth of leucite from the seeded precursor was 256(SD9) kJ/mol. [source] Preparation of Tubular Silicalite Membranes by Hydrothermal Synthesis with Electrophoretic Deposition as a Seeding TechniqueJOURNAL OF THE AMERICAN CERAMIC SOCIETY, Issue 1 2006Hideyuki Negishi Preparation of tubular silicalite membranes by hydrothermal synthesis with electrophoretic deposition (EPD) as a seeding technique was investigated. Two micrometers of small silicalite seeds were produced by an open-system hydrothermal synthesis at 100°C. These seeds were dispersed in 1-propanol and seeded on porous tubular stainless-steel supports by EPD; it had a high productivity and uniformity. The seeded support was then hydrothermally treated, and a tubular silicalite membrane was obtained. The pervaporation performance of this membrane showed a separation factor , of 70 with a total flux of 0.35 kg·(m2·h),1 for a 5 vol% EtOH aqueous solution at 30°C. [source] Direct Synthesis of New Zircon-Type ZrGeO4 and Zr(Ge,Si)O4 Solid SolutionsJOURNAL OF THE AMERICAN CERAMIC SOCIETY, Issue 8 2002Masanori Hirano A new phase of ZrGeO4 was hydrothermally synthesized from a mixture of ZrOCl2 solution and GeO2 powder at 240°C. X-ray diffractometry patterns of synthesized ZrGeO4 particles, which had better crystallinity than ZrSiO4 particles prepared by the same process from ZrOCl2 and tetraethoxysilane, could be indexed for a zircon-type tetragonal structure, having a0= 0.6694(0) and c0= 0.6265(7) nm. The c/a ratio of synthesized ZrGeO4 (0.9360) was larger than that of ZrSiO4 (0.9054). Solid solutions with zircon-type structure over the whole composition range in the ZrGeO4 -ZiSiO4 system were also directly synthesized through the same solution route. The secondary particle size of zircon-type Zr(Ge,Si)O4 solid solutions decreased, and its morphology gradually changed from octahedron-like to blood-red cell-like with decreased GeO2 content. [source] Hydrothermal Synthesis of Tetragonal Barium Titanate from Barium Chloride and Titanium Tetrachloride under Moderate ConditionsJOURNAL OF THE AMERICAN CERAMIC SOCIETY, Issue 3 2002Huarui Xu Tetragonal BaTiO3powders were prepared hydrothermally at 240°C, in only 12 h, using BaCl2·2H2O and TiCl4, which are rather easy to manipulate. Characterization via X-ray diffractometry, scanning electron microscopy, Brunauer,Emmett,Teller analysis, and differential scanning calorimetry confirmed that increasing the NaOH excess concentration (from 0.5M to 2.0M) and decreasing the initial TiCl4concentration (from 0.625M to 0.15M) promotes the formation of tetragonal BaTiO3powders. After reaction, the powders were proved to be phase-pure BaTiO3, with no impurities, such as Cl, and CO32,. [source] Formation of Novel ZSM-5/Porous Mullite Composite from Sintered Kaolin Honeycomb by Hydrothermal ReactionJOURNAL OF THE AMERICAN CERAMIC SOCIETY, Issue 5 2000Hiroaki Katsuki The formation and properties of continuous ZSM-5 film on a porous mullite honeycomb have been investigated. The porous mullite honeycomb coated with ZSM-5 film provides a novel microporous (0.5 nm in diameter),macroporous (0.5,0.6 ,m in diameter) composite. Amorphous silica-glass in the kaolin honeycomb sintered at 1650°C is used as a source for ZSM-5 formation. The honeycomb is hydrothermally treated in NaOH, tetrapropylammonium bromide, and water to prepare a novel honeycomb,zeolite composite by in situ crystallization of ZSM-5 film. This paper describes the effects of hydrothermal conditions,such as reaction temperature, time, and concentration of NaOH solution,on the formation of ZSM-5 film on the honeycomb, and on the mechanical strength and porous properties of the honeycomb composite. [source] Current-transport studies and trap extraction of hydrothermally grown ZnO nanotubes using gold Schottky diodePHYSICA STATUS SOLIDI (A) APPLICATIONS AND MATERIALS SCIENCE, Issue 3 2010G. Amin Abstract High-quality zinc oxide (ZnO) nanotubes (NTs) were grown by the hydrothermal technique on n-Si substrate. The room temperature (RT) current-transport mechanisms of Au Schottky diodes fabricated from ZnO NTs and nanorods (NRs) reference samples have been studied and compared. The tunneling mechanisms via deep-level states was found to be the main conduction process at low applied voltage but at the trap-filled limit voltage (VTFL) all traps were filled and the space-charge-limited current conduction was the dominating current-transport mechanism. The deep-level trap energy and the trap concentration for the NTs were obtained as ,0.27,eV and 2.1,×,1016,cm,3, respectively. The same parameters were also extracted for the ZnO NRs. The deep-level states observed crossponds to zinc interstitials (Zni), which are responsible for the violet emission. [source] Schottky contacts to hydrogen doped ZnOPHYSICA STATUS SOLIDI (A) APPLICATIONS AND MATERIALS SCIENCE, Issue 8 2008R. Schifano Abstract High resistivity (,1 k, cm) hydrothermally grown single crystal ZnO wafers were modified by hydrogen implantation. The implantation has been performed with multiple energies in order to form a box-like profile with a depth of 4 ,m and two different concentrations of 8 × 1017 H/cm3 and 1.5 × 1018 H/ cm3. A subsequent annealing at 200 °C for 30 min in N2 resulted in the formation of a highly conductive layer. Pd con- tacts deposited on the implanted side showed rectifying behaviour by up to three orders of magnitude. However by capacitance vs. voltage (C ,V) technique a carrier concentration significantly lower than the one expected according to the implanted H content was measured suggesting the presence of a high density of compensating centers and/or an incomplete activation of H as a donor. (© 2008 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim) [source] Compositional Variation of Hydrothermally Altered Volcanic Rocks in Hishikari Gold Epithermal System: A Useful Geochemical Indicator of Gold,Silver Epithermal MineralizationRESOURCE GEOLOGY, Issue 2 2010Naotatsu Shikazono Abstract The hydrothermally altered andesite hosting the Hishikari gold-silver vein deposits in southern Kyushu, Japan, is analyzed with respect to the spatial variation in chemical composition. The (CaO + Na2O) content is found to be inversely correlated with the K2O content as it progresses away from the site of mineralization. It was found that analytical data plotted on a (CaO + Na2O) , K2O diagram cannot be explained only by addition of K+ from the hydrothermal solution to the original rock and release of Ca2+ and Na+ from the original rock (K- alteration). Addition of Ca2+ and Na+ from the hydrothermal solution to the rock and release of K+ from the rock but release of K+, Ca2+, and Na+ to the hydrothermal solution (advanced argillic alteration) is important for causing the wide variations in K2O, CaO, and Na2O contents on the (CaO + Na2O) , K2O diagram. These variations can be explained by superimposed potassic, advanced argillic and calcium alterations. The altered rocks in the Honko-Sanjin area, Yamada area, and Masaki area analyzed by this study are characterized by their intermediate K2O content and variable CaO content, high K2O content and low CaO content, and low K2O content and low CaO content, respectively. The K2O, Na2O and CaO contents and oxygen isotopic composition of altered andesite, in conjunction with the solubility of gold as a thio complex, suggest that both gold deposition and the observed compositional variation of altered andesite are the result of mixing between acidic groundwater and neutral gold-bearing hydrothermal solution. The present results indicate that the compositional variation of hydrothermally altered rocks may represent a useful geochemical indicator of epithermal gold,silver mineralization. [source] Genesis of Tertiary Magnetite,Apatite Deposits, Southeast of Zanjan, IranRESOURCE GEOLOGY, Issue 4 2009Hossein Azizi Abstract Magnetite,apatite deposits in the Alborz volcano,plutonic belt, southeast Zanjan, in Iran, have blade, lenzoid, and vein forms, which extend in an E-W direction. There are many magnetite,apatite veins and veinlets in this region, and some of them are economically important, such as Zaker, Morvarid, Sorkheh,Dizaj, and Aliabad. The sizes of the vein orebodies vary between 2 and 16 m in width, 10,100 m in length, and 5,40 m in depth. Microscopic examination of thin sections and polishes indicate that they are composed of magnetite and apatite, with minor amounts of goethite, hematite, actinolite, quartz, muscovite,illite, talc, dolomite, and calcite. The geochemistry and mineralogy of the granitic host rock reveals that it is calc-alkaline and I-type. Field observations, mineral paragenesis, the composition of the orebodies, and the composition of the fluid inclusions in the apatite minerals with low salinity (less than 20 wt.% NaCl equivalent) indicate that these magnetite veins were hydrothermally generated at about 200,430°C and are not related to silica,iron oxide immiscibility, as are the major Precambrian magnetite deposits in central Iran. [source] |