Hydrothermal Alteration (hydrothermal + alteration)

Distribution by Scientific Domains


Selected Abstracts


Mineralogy, Lithogeochemistry and Elemental Mass Balance of the Hydrothermal Alteration Associated with the Gold-rich Batu Hijau Porphyry Copper Deposit, Sumbawa Island, Indonesia

RESOURCE GEOLOGY, Issue 3 2009
Arifudin Idrus
Abstract This paper discusses the mineralogy, whole-rock geochemistry and elemental mass balance of the hydrothermal alteration zones within the Batu Hijau porphyry copper-gold deposit, Sumbawa Island, Indonesia. The hydrothermal alteration and mineralisation developed in four stages, namely (i) the early stage consisting of a central copper-gold-bearing biotite (potassic), proximal actinolite (inner propylitic) and the distal chlorite-epidote (outer propylitic) zones; (ii) the transitional stage represented by the chlorite-sericite (intermediate argillic) zone; (iii) the late stages distinguished into the sericite-paragonite (argillic) and pyrophyllite-andalusite (advanced argillic) zones; and (iv) the very late stage typified by the illite-sericite zone. In general, major elements (particularly Ca, Mg, Na and K) and some minor and rare earth elements decrease from the least altered rocks towards the late alteration zones as a consequence of the breakdown of Ca-bearing hornblende, biotite and plagioclase. Chemical discrimination by means of millicationic R1 -R2 diagram indicates that R1 [4Si , 11(Na + K) , 2(Fe + Ti)] increases while R2[6Ca + 2Mg + Al] decreases with increasing alteration intensity, from least-altered, through early, transitional, to late alteration zones. Rare earth elements-chondrite (C1) normalised patterns also exhibit the depletion of the elements through the subsequent alteration zones. These results are consistent with the elemental mass balance calculation using the isocon method which shows that the degree of mass and volume depletion systematically increases during alteration. A decrease of the elements as well as mass and volume from early, through transitional to late alteration stages may imply a general decrease of the element activities in hydrothermal fluids during the formation of the alteration zones. [source]


Chemical, Isotopic, and Fluid Inclusion Evidence for the Hydrothermal Alteration of the Footwall Rocks of the BIF-Hosted Iron Ore Deposits in the Hamersley District, Western Australia

RESOURCE GEOLOGY, Issue 2 2003
Makoto Haruna
Abstract. The petrography, chemical, fluid inclusion and isotope analyses (O, Rb-Sr) were conducted for the shale samples of the Mount McRae Shale collected from the Tom Price, Newman, and Paraburdoo mines in the Hamersley Basin, Western Australia. The Mount McRae Shale at these mines occurs as a footwall unit of the secondary, hematite-rich iron ores derived from the Brockman Iron Formation, one of the largest banded iron formations (BIFs) in the world. Unusually low contents of Na, Ca, and Sr in the shales suggest that these elements were leached away from the shale after deposition. The ,18O (SMOW) values fall in the range of + 15.0 to +17.9 per mil and show the positive correlation with calculated quartz/sericite ratios of the shale samples. This suggests that the oxygen isotopic compositions of shale samples were homogenized and equilibrated by postdepositional event. The pyrite nodules hosted by shales are often rimmed by thin layers of silica of varying crystallinity. Fluid inclusions in quartz crystals rimming a pyrite nodule show homogenization temperatures ranging from 100 to 240d,C for 47 inclusions and salinities ranging from 0.4 to 12.3 wt% NaCl equivalent for 18 inclusions. These fluid inclusion data give direct evidence for the hydrothermal activity and are comparable to those of the vein quartz collected from the BIF-derived secondary iron ores (Taylor et al, 2001). The Rb-Sr age for the Mount McRae Shale is 1,952 ± 289 Ma and at least 200 million years younger than the depositional age of the Brockman Iron Formation of , 2.5 Ga in age. All the data obtained in this study are consistent with the suggestion that high temperature hydrothermal fluids were responsible for both the secondary iron ore formation and the alteration of the Mount McRae Shale. [source]


Hydrothermal Alteration and Cu-Au Mineralization at Nena High Sulfidation-type Deposit, Frieda River, Papua New Guinea

RESOURCE GEOLOGY, Issue 4 2002
Joseph Onglo Espi
Abstract. The Nena Cu-Au deposit, located in the Frieda River mineral district of northwestern mainland Papua New Guinea, is a composite structurally-lithologically controlled high sulfidation (HS) system. Its hydrothermal alteration and Cu-Au mineralization are presented in this paper. Initially propylitized andesitic volcanics veined by epithermal quartz were pervasively superimposed by zoned HS alteration. The zonation grades from vuggy silica core to sulfur-rich, pyritic silica-alunite halo followed by pyrophyllite-dickite-kaolinite interval and finally to thin illite-smectite margin, suggesting progressive decrease in temperature and increase in pH. This zonation is enveloped by chlorite-epidote-calcite-gypsum alteration. The acid altered rocks were then invaded by multiple phases of pyrite, subsequently crosscut by quartz, vein alunite and barite. Then sequential deposition of bladed covellite, enargite, luzonite and stibioluzonite occurred from the NW to the SE portions of the deposit, forming a zonation suggestive of progressive decrease in temperature, sulfur fugacity and sulfidation stage. Most ore mineralization occurs in the vuggy silica core. Gold mineralization commenced from the transition of enargite to luzonite and continued throughout the stibioluzonite stage. Associated with gold deposition are Au-rich pyrite, tennantite-tetrahedrite, chalcopyrite-bornite, native tellurium, electrum, calaverite, bismuthinite and galena. Native sulfur occupied the remaining cavities and represents the waning stage of the hydrothermal system. Fluid inclusions studies distinguished magmatic (>300,350d,C, 9,15 wt% NaCl equiv.) and meteoric (<150,200d,C, 1,2 wt% NaCl equiv.) fluids (Holzberger et al., 1996). Temperatures and salinities of fluid inclusions from barite associated with Cu sulfides show a general decrease from NW (330d,C, 9,15 wt% NaCl equiv.) to SE (172d,C, 10 wt% NaCl equiv.) parts of the deposit, indicating gradual entrainment of ground water (Hitchman and Espi, 1997). Interaction of magmatic fluids with meteoric water accompanied by changes in temperature, salinity, acidity and oxidation state of the resultant fluids is interpreted to have been the main cause of metal precipitation. Finally, supergene processes generated Au zone with an underlying chalcocite-covellite-digenite blanket over the primary sulfides at depth. Gold occurs as lattice constituent in scorodite, limonite-goethite and jarosite. Chalcocite is more abundant and widespread than other Cu sulfides. Acidic fluids deposited powdery alunite and kaolinite, vein alunite and amorphous silica. Weakly secondary biotite-quartz altered porphyry located below the known HS Cu-Au deposit contains chalcopyrite-bornite and is overprinted by quartz-alunite-pyro-phyllite-pyrite assemblage. This feature indicates close temporal, spatial and genetic relation between the two deposit types. [source]


New insights from reactive transport modelling: the formation of the sericitic vein envelopes during early hydrothermal alteration at Butte, Montana

GEOFLUIDS (ELECTRONIC), Issue 3 2002
S. Geiger
Abstract A reactive transport computer code has been employed to model hydrothermal alteration of a granitoid rock bordering a discrete vein channel. The model suggests that the grey sericitic and sericitic with remnant biotite alteration envelopes at the porphyry copper deposit at Butte, Montana, can be formed by a reducing, low pH, and low salinity fluid under constant temperature and pressure conditions of approximately 400 °C and less than 100 MPa during a time span of approximately 100 years or less. Hydrothermal alteration has little effect on the porosity of the host rock (Butte Quartz Monzonite), and the diffusivity of the aqueous species also changes little. A sequence of mineral reaction fronts characterizes the alteration envelopes. The biotite dissolution front occurs closest to the vein channel and marks the transition from the grey sericitic to sericitic with remnant biotite envelope. The plagioclase dissolution front occurs farthest into the matrix and marks the edge of relatively fresh Butte Quartz Monzonite. From the properties of the quasi-stationary state approximation (Lichtner 1988; Lichtner 1991), it follows that once the sequence of reaction fronts is fully established, their relative locations remain constant and the widths of the reaction zones increase with the square root of time. [source]


Hydrothermal alteration, fluid flow and volume change in shear zones: the layered mafic,ultramafic Kettara intrusion (Jebilet Massif, Variscan belt, Morocco)

JOURNAL OF METAMORPHIC GEOLOGY, Issue 1 2004
A. Essaifi
Abstract During emplacement and cooling, the layered mafic,ultramafic Kettara intrusion (Jebilet, Morocco) underwent coeval effects of deformation and pervasive fluid infiltration at the scale of the intrusion. In the zones not affected by deformation, primary minerals (olivine, plagioclase, clinopyroxene) were partially or totally altered into Ca-amphibole, Mg-chlorite and CaAl-silicates. In the zones of active deformation (centimetre-scale shear zones), focused fluid flow transformed the metacumulates (peridotites and leucogabbros) into ultramylonites where insoluble primary minerals (ilmenite, spinel and apatite) persist in a Ca-amphibole-rich matrix. Mass-balance calculations indicate that shearing was accompanied by up to 200% volume gain; the ultramylonites being enriched in Si, Ca, Mg, and Fe, and depleted in Na and K. The gains in Ca and Mg and losses in Na and K are consistent with fluid flow in the direction of increasing temperature. When the intrusion had cooled to temperatures prevailing in the country rock (lower greenschist facies), deformation was still active along the shear zones. Intense intragranular fracturing in the shear zone walls and subsequent fluid infiltration allowed shear zones to thicken to metre-scale shear zones with time. The inner parts of the shear zones were transformed into chlorite-rich ultramylonites. In the shear zone walls, muscovite crystallized at the expense of Ca,Al silicates, while calcite and quartz were deposited in ,en echelon' veins. Mass-balance calculations indicate that formation of the chlorite-rich shear zones was accompanied by up to 60% volume loss near the centre of the shear zones; the ultramylonites being enriched in Fe and depleted in Si, Ca, Mg, Na and K while the shear zones walls are enriched in K and depleted in Ca and Si. The alteration observed in, and adjacent to the chlorite shear zones is consistent with an upward migrating regional fluid which flows laterally into the shear zone walls. Isotopic (Sr, O) signatures inferred for the fluid indicate it was deeply equilibrated with host lithologies. [source]


Hydrothermal alteration of late- to post-tectonic Lyon Mountain Granitic Gneiss, Adirondack Mountains, New York: Origin of quartz,sillimanite segregations, quartz,albite lithologies, and associated Kiruna-type low-Ti Fe-oxide deposits

JOURNAL OF METAMORPHIC GEOLOGY, Issue 1 2002
J. Mclelland
Abstract Quartz,sillimanite segregations, quartz,albite lithologies (Ab95,98), and Kiruna-type low-Ti iron-oxide deposits are associated with late- to post-tectonic (c. 1055 Ma) leucogranites of Lyon Mountain Gneiss (LMG) in the Adirondack Mountains, New York State. Most recent interpretations of these controversial features, which are global in occurrence, favour hydrothermal origins in agreement with results presented here. Field relations document that quartz,sillimanite veins and nodules cut, and therefore post-date, emplacement of host LMG leucogranites. Veins occur in oriented fracture networks, and aligned trains of nodules are interpreted as disrupted early veins. Late dykes of leucogranite cut veins and nodules demonstrating formation prior to terminal magmatism. Veins and nodules consist of sillimanite surrounded by quartz that commonly embays wall-rock feldspar indicating leaching of Na and K from LMG feldspar by acidic hydrothermal fluids. Subsequent, and repeated, ductile flow disrupted earlier veins into nodular fragments but produced little grain shape fabric. Geochemical and petrographic studies of quartz,albite rock indicate that it formed through metasomatic replacement (albitization) of LMG microperthite by sodic hydrothermal fluids that resulted in diagnostic checkerboard albite. Low-Ti iron-oxide ores are commonly associated with the quartz,albite sub-unit, and it is proposed that hydrothermal fluids related to albitization transported Fe as well. The regional extent of sodic alteration suggests large quantities of surface-derived hydrothermal fluids. Fluid inclusion and oxygen isotope data are consistent with high temperature, regionally extensive fluids consisting primarily of evolved surface-derived brines enriched in Na and Cl. Quartz,sillimanite veins and nodules, which are significantly more localised phenomena and require acidic fluids, were most likely formed from local magmatic fluids in the crystallizing carapaces of LMG plutons. [source]


Variations in Chemical Composition of Clay Minerals and Magnetic Susceptibility of Hydrothermally Altered Rocks in the Hishikari Epithermal Gold Deposit, SW Kyushu, Japan

RESOURCE GEOLOGY, Issue 1 2008
Hiroyasu Murakami
Abstract Hydrothermal alteration, involving chiefly chlorite and illite, is extensively distributed within host rocks of the Pleistocene Hishikari Lower Andesites (HLA) and the Cretaceous Shimanto Supergroup (SSG) in the underground mining area of the Hishikari epithermal gold deposit, Kagoshima, Japan. Approximately 60% of the mineable auriferous quartz-adularia veins in the Honko vein system occur in sedimentary rocks of the SSG, whereas all the veins of the Yamada vein system occur in volcanic rocks of the HLA. Variations in the abundance and chemical composition of hydrothermal minerals and magnetic susceptibility of the hydrothermally altered rocks of the HLA and SSG were analyzed. In volcanic rocks of the HLA, hydrothermal minerals such as quartz, chlorite, adularia, illite, and pyrite replaced primary minerals. The amount of hydrothermal minerals in the volcanic rocks including chlorite, adularia, illite, and pyrite as well as the altered and/or replaced pyroxenes and plagioclase phenocrysts increases toward the veins in the Honko vein system. The vein-centered variation in mineral assemblage is pronounced within up to 25 m from the veins in the peripheral area of the Honko vein system, whereas it is not as apparent in the Yamada vein system. The hydrothermal minerals in sandstone of the SSG occur mainly as seams less than a few millimeters thick and are sporadically observed in halos along the veins and/or the seams. The alteration halos in sandstone of the SSG are restricted to within 1 m of the veins. In the peripheral area of the Honko vein system, chlorite in volcanic rocks is characterized by increasing in Al in its tetrahedral layer and the Fe/Fe + Mg ratio toward the veins, while illite in volcanic rocks has relatively low K and a restricted range of Fe/Fe + Mg ratios. Temperature estimates derived from chlorite geothermometry rise toward the veins within the volcanic rocks. The magnetic susceptibility of tuff breccia of the HLA varies from 21 to less than 0.01 × 10,3 SI within a span of 40 m from the veins and has significant variation relative to that of andesite (27,0.06 × 10,3 SI). The variation peripheral to the Honko vein system correlates with an increase in the abundance of hematite pseudomorphs after magnetite, the percentage of adularia and chlorite with high Fe/Fe + Mg ratios, and the degree of plagioclase alteration with decreasing distance to the veins. In contrast, sedimentary rocks of the SSG maintain a consistent magnetic susceptibility across the alteration zone, within a narrow range from 0.3 to 0.2 × 10,3 SI. Magnetic susceptibility of volcanic rocks of the HLA, especially tuff breccia, could serve as an effective exploration tool for identifying altered volcanic rocks. [source]


Geology, Wall-rock Alteration and Vein Paragenesis of the Bilimoia Gold Deposit, Kainantu Metallogenic Region, Papua New Guinea

RESOURCE GEOLOGY, Issue 3 2007
Joseph Onglo Espi
Abstract The Bilimoia deposit (2.23 Mt, 24 g/t Au), located in the eastern Central Mobile Belt of mainland Papua New Guinea, is composed of fault-hosted, NW,NNW-trending Irumafimpa,Kora and Judd,Upper Kora Au-quartz veins hosted by Middle,Late Triassic basement that was metamorphosed to medium-grade greenschist facies between Middle,Late Triassic and Early,Middle Jurassic. Mineralizing fluids were introduced during crustal thickening, rapid uplift, change of plate motions from oblique to orthogonal compression, active faulting and S3 and S4 events in an S1,S4 deformation sequence. The Bilimoia deposit is spatially and temporally related to I-type, early intermediate to felsic and late mafic intrusions emplaced in Late Miocene (9,7 Ma). Hydrothermal alteration and associated mineralization is divided into 10 main paragenetic stages: (1) chlorite,epidote-selvaged quartz,calcite,specularite vein; (2) local quartz,illite,pyrite alteration; (3) quartz,sericite,mariposite,fuchsite,pyrite wall-rock alteration that delimits the bounding shears; (4) finely banded, colloform-, crustiform- and cockade-textured and drusy quartz ± early wolframite ± late adularia; (5) hematite; (6) pyrite; (7) quartz ± amethyst-base metal sulfides; (8) quartz,chalcopyrite,bornite,Sn and Cu sulfides,Au tellurides and Te ± Bi ± Ag ± Cu ± Pb phases; (9) Fe ± Mn carbonates; and (10) supergene overprint. Fluid inclusions in stage 4 are characterized by low salinity (0.9,5.4 wt% NaCl equivalent), aqueous,carbonic fluids with total homogenization temperatures ranging from 210 to 330°C. Some of the inclusions that homogenized between 285 and 330°C host coexisting liquid- and vapor-rich (including carbonic) phases, suggesting phase separation. Fluid inclusions in quartz intergrown with wolframite have low salinity (0.9,1.2 wt% NaCl equivalent), aqueous,carbonic fluids at 240,260°C, defining the latter's depositional conditions. The ore fluids were derived from oxidized magmatic source initially contaminated by reduced basement rocks. Wall-rock alteration and involvement of circulating meteoric waters were dominant during the first three stages and early part of stage 4. Stage 5 hematite was deposited as a result of stage 4 phase separation or entrainment of oxygenated groundwater. Gold is associated with Te- and Bi-bearing minerals and mostly precipitated as gold-tellurides during stage 8. Gold deposition occurred below 350°C due to a change in the sulfidation and oxidation state of the fluids, depressurization and decreasing temperature and activities of sulfur and tellurium. Bisulfides are considered to be the main Au-transporting complexes. The Bilimoia deposit has affinities that are similar to many gold systems termed epizonal orogenic and intrusion-related. The current data allow us to classify the Bilimoia deposit as a fault-controlled, metamorphic-hosted, intrusion-related mesothermal to low sulfidation epithermal quartz,Au,Te,Bi vein system. [source]


Post-excavation deterioration of the Copney Bronze Age Stone Circle Complex: A geomorphological perspective

GEOARCHAEOLOGY: AN INTERNATIONAL JOURNAL, Issue 5 2010
Patricia A. Warke
Post-excavation deterioration of stones from under blanket peat at the Copney Bronze Age Stone Circle Complex in County Tyrone, Northern Ireland, proceeded through widespread scaling, flaking, and splitting of stones. Investigation showed that prior to burial the porphyritic stones already possessed a complex legacy of geological weaknesses derived from hydrothermal alteration and tectonic deformation. Analysis indicated that significant alteration occurred during approximately 2000 years of burial under acidic peat cover, with development of a secondary porosity, alteration of primary minerals, and the opening of preexisting lines of weakness within the stones. Burial under peat also resulted in "bleaching" the stones so that they appeared white in color following excavation. These alterations during burial left the stones in a significantly weakened state and particularly susceptible to the effects of subaerial weathering processes. Data underline the potential fragility of excavated stonework and highlight the need to plan for its aftercare before complete excavation is undertaken. © 2010 Wiley Periodicals, Inc. [source]


Geothermal activity at the archaeological site of Aghia Kyriaki and its significance to Roman industrial mineral exploitation on Melos, Greece

GEOARCHAEOLOGY: AN INTERNATIONAL JOURNAL, Issue 3 2003
A. J. Hall
The geothermal setting of the archaeological site at Aghia Kyriaki, Southeast Melos (or Milos) was investigated in order to help clarify the possible role of the site in mineral exploitation on Melos in Roman times. There are active sulfurous fumaroles in the area and these were also potential sources of sulfur and alum-group minerals in Roman times. However, geothermal activity has been ongoing in Southeast Melos for hundreds of thousands of years, and extensive hydrothermal alteration of basement rocks to the northeast of the site has produced "white rocks" containing additional potential industrial minerals such as kaolin and alunite. The archaeological remains occur within, but mainly near the surface, of a deeply gullied sequence of late Quaternary alluvial sediments, which consist mainly of metamorphic detritus but are rich in sulfates; the remains contain pottery sherds through the entire sequence of about 40 m. They were deposited on an earlier gullied topography of felsic tuffs overlying the metamorphic basement. Pervasive and veinlike intense reddish alteration of these sediments is probably mainly due to superheated fluid escaping from depth. Field observations demonstrate that this took place after the main phase of building but was likely to be ongoing during occupation of the site. While industrial minerals and geothermal energy would therefore have been available in the Roman period, any relationship of the site to mineral exploitation will have to be determined by archaeological excavation. © 2003 Wiley Periodicals, Inc. [source]


Permeability of the continental crust: dynamic variations inferred from seismicity and metamorphism

GEOFLUIDS (ELECTRONIC), Issue 1-2 2010
S. E. INGEBRITSEN
Geofluids (2010) 10, 193,205 Abstract The variation of permeability with depth can be probed indirectly by various means, including hydrologic models that use geothermal data as constraints and the progress of metamorphic reactions driven by fluid flow. Geothermal and metamorphic data combine to indicate that mean permeability (k) of tectonically active continental crust decreases with depth (z) according to log k , ,14,3.2 log z, where k is in m2 and z in km. Other independently derived, crustal-scale k,z relations are generally similar to this power-law curve. Yet there is also substantial evidence for local-to-regional-scale, transient, permeability-generation events that entail permeabilities much higher than these mean k,z relations would suggest. Compilation of such data yields a fit to these elevated, transient values of log k , ,11.5,3.2 log z, suggesting a functional form similar to that of tectonically active crust, but shifted to higher permeability at a given depth. In addition, it seems possible that, in the absence of active prograde metamorphism, permeability in the deeper crust will decay toward values below the mean k,z curves. Several lines of evidence suggest geologically rapid (years to 103 years) decay of high-permeability transients toward background values. Crustal-scale k,z curves may reflect a dynamic competition between permeability creation by processes such as fluid sourcing and rock failure, and permeability destruction by processes such as compaction, hydrothermal alteration, and retrograde metamorphism. [source]


An experimental and modeling study of Na-rich hydrothermal alteration

GEOFLUIDS (ELECTRONIC), Issue 4 2005
J. HARA
Abstract Sodic alteration assemblages including clinoptilolite, mordenite, analcime and Na-montmorillonite were locally observed in sediments in the eastern part of the Hachimantai geothermal region, northeast Japan. This study investigated the mechanisms of sodic enrichment in the sediments during alteration. Kinetic results for water/rock interaction experiments are reported here. Batch-type experiments were conducted at 150,250°C under saturated vapor pressure. Pyroclastic rocks dissolved incongruently in these experiments, and the solubility and dissolution rates among elements varied as follows: the apparent steady-state concentrations of major elements are Si > Na , K > Ca > Al and the order of the dissolution rates is Si > Al > Na , K > Ca. Na had the highest steady-state concentration and fastest dissolution rate of the alkali and alkali earth metal ions. Based on surface analysis of plagioclase, dissolution was effected via a reaction layer of Na-montmorillonite on the mineral surface. Additionally, a reaction model constructed based on the experimentally observed reaction mechanism quantitatively explains the dissolution behavior. These results show that Na-montmorillonite can be precipitated by pyroclastic rock/meteoric water interactions without seawater involvement: the Na is derived from the host rocks. [source]


New insights from reactive transport modelling: the formation of the sericitic vein envelopes during early hydrothermal alteration at Butte, Montana

GEOFLUIDS (ELECTRONIC), Issue 3 2002
S. Geiger
Abstract A reactive transport computer code has been employed to model hydrothermal alteration of a granitoid rock bordering a discrete vein channel. The model suggests that the grey sericitic and sericitic with remnant biotite alteration envelopes at the porphyry copper deposit at Butte, Montana, can be formed by a reducing, low pH, and low salinity fluid under constant temperature and pressure conditions of approximately 400 °C and less than 100 MPa during a time span of approximately 100 years or less. Hydrothermal alteration has little effect on the porosity of the host rock (Butte Quartz Monzonite), and the diffusivity of the aqueous species also changes little. A sequence of mineral reaction fronts characterizes the alteration envelopes. The biotite dissolution front occurs closest to the vein channel and marks the transition from the grey sericitic to sericitic with remnant biotite envelope. The plagioclase dissolution front occurs farthest into the matrix and marks the edge of relatively fresh Butte Quartz Monzonite. From the properties of the quasi-stationary state approximation (Lichtner 1988; Lichtner 1991), it follows that once the sequence of reaction fronts is fully established, their relative locations remain constant and the widths of the reaction zones increase with the square root of time. [source]


Middle Archean ocean ridge hydrothermal metamorphism and alteration recorded in the Cleaverville area, Pilbara Craton, Western Australia

JOURNAL OF METAMORPHIC GEOLOGY, Issue 7 2007
T. SHIBUYA
Abstract A hydrothermally metamorphosed greenstone complex, capped by bedded cherts and banded iron formations (BIFs), is exposed in the Cleaverville area, Pilbara Craton, Western Australia. It has been interpreted as an accretionary complex characterized by both a duplex structure and an oceanic plate stratigraphy, and is shown to represent a 3.2 Ga upper oceanic crust. Three metamorphic zones are identified in the basaltic greenstones. The metamorphic grade increases from sub-greenschist facies (zones A and B) to greenschist facies (zone C) under low-pressure conditions. The boundaries between three mineral zones are subparallel to the bedding plane of overlying chert/BIF, and metamorphic temperature increases stratigraphically downward. The zones correspond to the thermal structure of ocean-floor metamorphism, at a mid-ocean ridge. The uppermost greenstone in the study area is more pervasively altered and carbonatized than the modern upper oceanic crust. This indicates the enrichment of CO2 in the metamorphic fluid by which widespread formation of carbonate occurred, compared with a narrow stability region of Ca-Al silicates. It is, therefore, suggested that the Archean hydrothermal alteration played a more important role in fixation of CO2 than present-day ocean-ridge hydrothermal alteration, as an interaction between sea water and oceanic crust. [source]


Serpentinites of the Zermatt-Saas ophiolite complex and their texture evolution

JOURNAL OF METAMORPHIC GEOLOGY, Issue 3 2004
X.-P. Li
Abstract The Zermatt-Saas serpentinite complex is an integral member of the Penninic ophiolites of the Central Alps and represents the mantle part of the oceanic lithosphere of the Tethys. Metamorphic textures of the serpentinite preserve the complex mineralogical evolution from primary abyssal peridotite through ocean-floor hydration, subduction-related high-pressure overprint, meso-Alpine greenschist facies metamorphism, and late-stage hydrothermal alteration. The early ocean floor hydration of the spinel harzburgites is still visible in relic pseudomorphic bastite and locally preserved mesh textures. The primary serpentine minerals were completely replaced by antigorite. The stable assemblage in subduction-related mylonitic serpentinites is antigorite,olivine,magnetite ± diopside. The mid-Tertiary greenschist facies overprint is characterized by minor antigorite recrystallization. Textural and mineral composition data of this study prove that the hydrated mineral assemblages remained stable during high-pressure metamorphism of up to 2.5 GPa and 650 °C. The Zermatt-Saas serpentinites thus provide a well documented example for the lack of dehydration of a mantle fragment during subduction to 75 km depth. [source]


Petrography, geochemistry, and alteration of country rocks from the Bosumtwi impact structure, Ghana

METEORITICS & PLANETARY SCIENCE, Issue 4-5 2007
Forson KARIKARI
The country rocks, mainly meta-graywacke, shale, and phyllite of the Early Proterozoic Birimian Supergroup and some granites of similar age, are characterized by two generations of alteration. A pre-impact hydrothermal alteration, often along shear zones, is characterized by new growth of secondary minerals, such as chlorite, sericite, sulfides, and quartz, or replacement of some primary minerals, such as plagioclase and biotite, by secondary sericite and chlorite. A late, argillic alteration, mostly associated with the suevites, is characterized by alteration of the melt/glass clasts in the groundmass of suevites to phyllosilicates. Suevite, which occurs in restricted locations to the north and to the south-southwest of the crater rim, contains melt fragments, diaplectic quartz glass, ballen quartz, and clasts derived from the full variety of target rocks. No planar deformation features (PDFs) in quartz were found in the country rock samples, and only a few quartz grains in the suevite samples show PDFs, and in rare cases two sets of PDFs. Based on a total alkali element-silica (TAS) plot, the Bosumtwi granites have tonalitic to quartz-dioritic compositions. The Nb versus Y and Ta versus Yb discrimination plots show that these granites are of volcanic-arc tectonic provenance. Provenance studies of the metasedimentary rocks at the Bosumtwi crater have also indicated that the metasediments are volcanic-arc related. Compared to the average siderophile element contents of the upper continental crust, both country rocks and impact breccias of the Bosumtwi structure show elevated siderophile element contents. This, however, does not indicate the presence of an extraterrestrial component in Bosumtwi suevite, because the Birimian country rocks also have elevated siderophile element contents, which is thought to result from regional hydrothermal alteration that is also related to widespread sulfide and gold mineralization. [source]


Target rocks, impact glasses, and melt rocks from the Lonar impact crater, India: Petrography and geochemistry

METEORITICS & PLANETARY SCIENCE, Issue 9-10 2005
Shiloh Osae
A representative set of target basalts, including the basalt flows excavated by the crater, and a variety of impact breccias and impact glasses, were analyzed for their major and trace element compositions. Impact glasses and breccias were found inside and outside the crater rim in a variety of morphological forms and shapes. Comparable geochemical patterns of immobile elements (e.g., REEs) for glass, melt rock and basalt indicates minimal fractionation between the target rocks and the impactites. We found only little indication of post-impact hydrothermal alteration in terms of volatile trace element changes. No clear indication of an extraterrestrial component was found in any of our breccias and impact glasses, indicating either a low level of contamination, or a non-chondritic or otherwise iridium-poor impactor. [source]


Orogenic Gold Mineralization in the Qolqoleh Deposit, Northwestern Iran

RESOURCE GEOLOGY, Issue 3 2007
Farhang Aliyari
Abstract The Qolqoleh gold deposit is located in the northwestern part of the Sanandai-Sirjan Zone, northwest of Iran. Gold mineralization in the Qolqoleh deposit is almost entirely confined to a series of steeply dipping ductile,brittle shear zones generated during Late Cretaceous,Tertiary continental collision between the Afro-Arabian and the Iranian microcontinent. The host rocks are Mesozoic volcano-sedimentary sequences consisting of felsic to mafic metavolcanics, which are metamorphosed to greenschist facies, sericite and chlorite schists. The gold orebodies were found within strong ductile deformation to late brittle deformation. Ore-controlling structure is NE,SW-trending oblique thrust with vergence toward south ductile,brittle shear zone. The highly strained host rocks show a combination of mylonitic and cataclastic microstructures, including crystal,plastic deformation and grain size reduction by recrystalization of quartz and mica. The gold orebodies are composed of Au-bearing highly deformed and altered mylonitic host rocks and cross-cutting Au- and sulfide-bearing quartz veins. Approximately half of the mineralization is in the form of dissemination in the mylonite and the remainder was clearly emplaced as a result of brittle deformation in quartz,sulfide microfractures, microveins and veins. Only low volumes of gold concentration was introduced during ductile deformation, whereas, during the evident brittle deformation phase, competence contrasts allowed fracturing to focus on the quartz,sericite domain boundaries of the mylonitic foliation, thus permitting the introduction of auriferous fluid to create disseminated and cross-cutting Au-quartz veins. According to mineral assemblages and alteration intensity, hydrothermal alteration could be divided into three zones: silicification and sulfidation zone (major ore body); sericite and carbonate alteration zone; and sericite,chlorite alteration zone that may be taken to imply wall-rock interaction with near neutral fluids (pH 5,6). Silicified and sulfide alteration zone is observed in the inner parts of alteration zones. High gold grades belong to silicified highly deformed mylonitic and ultramylonitic domains and silicified sulfide-bearing microveins. Based on paragenetic relationships, three main stages of mineralization are recognized in the Qolqoleh gold deposit. Stage I encompasses deposition of large volumes of milky quartz and pyrite. Stage II includes gray and buck quartz, pyrite and minor calcite, sphalerite, subordinate chalcopyrite and gold ores. Stage III consists of comb quartz and calcite, magnetite, sphalerite, chalcopyrite, arsenopyrite, pyrrhotite and gold ores. Studies on regional geology, ore geology and ore-forming stages have proved that the Qolqoleh deposit was formed in the compression,extension stage during the Late Cretaceous,Tertiary continental collision in a ductile,brittle shear zone, and is characterized by orogenic gold deposits. [source]


The Cornubian Batholith: an Example of Magmatic Fractionation on a Crustal Scale

RESOURCE GEOLOGY, Issue 3 2006
Bruce W. Chappell
Abstract. The Cornubian Batholith comprises six major and several smaller bodies of S-type granite in southwestern England. These late-Variscan granites comprise two-mica granites, and much less abundant Li-mica granites that are restricted to one of the major bodies (St Austell) and smaller bodies. Some of these intrusive rocks are associated with major Sn mineralization. This paper is concerned with the geochemistry of the two-mica granites, which are felsic, strongly peraluminous, and have a high total alkali content and low Na:K. Rocks with very similar compositions to these granites occur elsewhere, including the Variscan granites of continental Europe, and in southeastern Australia. In detail all of the major plutons of this batholith have distinctive compositions, except for Bodmin Moor and Carnmenellis which cannot be discriminated from each other compositionally. A comparison with experimental data shows that the granites attained their major element composition under conditions of crystal-liquid equilibrium, with the final melt being saturated in H2O, at temperatures close to 770d,C and pressures about 50 MPa. That temperature estimate is in good agreement with values obtained from zircon saturation thermometry. The specific minimum-temperature composition excludes the possibility of widespread transfer of elements during hydrothermal alteration. Minor elements that are relatively very abundant are Li, B, Cs and U, while F, Ga, Ge, Rb, Sn, Ta, W and Tl are quite abundant and P is high for felsic rocks. Sr, Ba, and the trace transition metals Sc to Zn, are low, but not as low as they commonly are in very felsic granites. These trace element abundances, and the EL2O-saturation, resulted from the fractional crystallization of a melt derived by the partial melting of feldspathic greywackes in the crust. The Cornubian granites have compositions very similar to the more felsic rocks of the Koetong Suite of southeastern Australia, where a full range of granites formed at the various stages of magmatic fractionation postulated for the Cornubian granites, can be observed. The operation of fractional crystallization in the Cornubian granites is confirmed by the high P abundances in the feldspars, with P contents of the plagioclase crystals correlating with Ab-con-tent Most of the granites represent solidified melt compositions but within the Dartmoor pluton there is a significant component of granites that are cumulative, shown by their higher Ca contents. The Cornubian plutons define areas of high heat flow, of a magnitude which requires that fractionated magmas were transported laterally from their sources and concentrated in the exposed plutons. The generation of these granite plutons therefore involved magmatic fractionation during the stages of partial melting, removal of unmelted material from that melt, and fractional crystallization. During the later stages of those processes, movement of those magmas occurred on a crustal scale. [source]


Magnetotelluric Investigation of the Hydrothermal System and Heat Source in the Muine-Toyoha Geothermal Area, Hokkaido, Japan

RESOURCE GEOLOGY, Issue 3 2003
Shinichi Takakura
Abstract. Magnetotelluric (MT) surveys were carried out around the Muine volcano, Hokkaido, Japan, where it is expected that the heat and metal source forming the polymetallic Ag-Pb-Zn-Cu-In Toyoha deposit is present at depth. Measurements were performed at 20 sites, 18 of which were located along a WSW-ENE profile traversing the north ridge of Mt. Muine. A resistivity model obtained from 2D inversion of the MT data shows subsurface specific conductive and resistive features. Conductive layers are present at the surface of Mt. Muine. The low resistivity is probably due to the clay-rich rocks associated with the hydrothermal alteration. A high resistivity layer, which corresponds to the pre-Tertiary Usubetsu Formation, crops out east of Mt. Muine and dips westward. At the west foot of Mt. Muine, relatively high resistive layers are widely exposed. The resistivity increases with depth and exceeds 1000 ohm-m. This fact indicates that this region is not influenced by the recent hydrothermal activity. An extremely conductive zone about 3,6 km wide and 6,9 km thick exists at a depth of 2 km below Mt. Muine. This zone mostly corresponds to an elastic wave attenuation zone detected by a seismic survey. It is interpreted as a large hydrothermal reservoir or melted magma, which is a heat source of the hydrothermal system in this area. [source]


Hydrothermal Alteration and Cu-Au Mineralization at Nena High Sulfidation-type Deposit, Frieda River, Papua New Guinea

RESOURCE GEOLOGY, Issue 4 2002
Joseph Onglo Espi
Abstract. The Nena Cu-Au deposit, located in the Frieda River mineral district of northwestern mainland Papua New Guinea, is a composite structurally-lithologically controlled high sulfidation (HS) system. Its hydrothermal alteration and Cu-Au mineralization are presented in this paper. Initially propylitized andesitic volcanics veined by epithermal quartz were pervasively superimposed by zoned HS alteration. The zonation grades from vuggy silica core to sulfur-rich, pyritic silica-alunite halo followed by pyrophyllite-dickite-kaolinite interval and finally to thin illite-smectite margin, suggesting progressive decrease in temperature and increase in pH. This zonation is enveloped by chlorite-epidote-calcite-gypsum alteration. The acid altered rocks were then invaded by multiple phases of pyrite, subsequently crosscut by quartz, vein alunite and barite. Then sequential deposition of bladed covellite, enargite, luzonite and stibioluzonite occurred from the NW to the SE portions of the deposit, forming a zonation suggestive of progressive decrease in temperature, sulfur fugacity and sulfidation stage. Most ore mineralization occurs in the vuggy silica core. Gold mineralization commenced from the transition of enargite to luzonite and continued throughout the stibioluzonite stage. Associated with gold deposition are Au-rich pyrite, tennantite-tetrahedrite, chalcopyrite-bornite, native tellurium, electrum, calaverite, bismuthinite and galena. Native sulfur occupied the remaining cavities and represents the waning stage of the hydrothermal system. Fluid inclusions studies distinguished magmatic (>300,350d,C, 9,15 wt% NaCl equiv.) and meteoric (<150,200d,C, 1,2 wt% NaCl equiv.) fluids (Holzberger et al., 1996). Temperatures and salinities of fluid inclusions from barite associated with Cu sulfides show a general decrease from NW (330d,C, 9,15 wt% NaCl equiv.) to SE (172d,C, 10 wt% NaCl equiv.) parts of the deposit, indicating gradual entrainment of ground water (Hitchman and Espi, 1997). Interaction of magmatic fluids with meteoric water accompanied by changes in temperature, salinity, acidity and oxidation state of the resultant fluids is interpreted to have been the main cause of metal precipitation. Finally, supergene processes generated Au zone with an underlying chalcocite-covellite-digenite blanket over the primary sulfides at depth. Gold occurs as lattice constituent in scorodite, limonite-goethite and jarosite. Chalcocite is more abundant and widespread than other Cu sulfides. Acidic fluids deposited powdery alunite and kaolinite, vein alunite and amorphous silica. Weakly secondary biotite-quartz altered porphyry located below the known HS Cu-Au deposit contains chalcopyrite-bornite and is overprinted by quartz-alunite-pyro-phyllite-pyrite assemblage. This feature indicates close temporal, spatial and genetic relation between the two deposit types. [source]


Mass Transfer, Oxygen Isotopic Variation and Gold Precipitation in Epithermal System: A Case Study of the Hishikari Deposit, Southern Kyushu, Japan

RESOURCE GEOLOGY, Issue 3 2002
Naotatsu SHIKAZONO
Abstract: Transportation of various kinds of elements occurred in wall rocks (Quaternary andesites) during the hydrothermal alteration accompanied by the Hishikari epithermal gold mineralization. For example, K2O and MgO contents of wall rocks decrease away from the gold-quartz veins, while (CaO+Na2O) content increases, and SiO2 content is variable near the veins. Hydrothermal alteration zoning and bulk compositional variations in wall rocks suggest that the mixing of hydrothermal solution and acidic groundwater took place an important role as the cause for the hydrothermal alteration and bulk compositional variations. The relationship between dissolved silica concentration and temperature of hydrothermal solution mixed with groundwater is obtained based on precipitation kinetics-fluid flow,mixing model, and the computed results are compared with the distribution of SiO2 minerals (quartz and cristobalite) in the hydrothermal alteration zones. This comparison suggests that the most reasonable flow rate of fluids migrating through hydrothermal alteration zones, and A/M (A: surface area of rocks interacting with fluid, M: mass of fluid) are estimated to be ca. 10 -4.2 m/sec, and ca. 0.10 m2/kg, respectively. The mixing of two fluids (hydrothermal solution and acidic groundwater) can also explain ,18O zoning in the altered country rocks, hydrothermal alteration zoning from K-feldspar through K-mica to kaolinite from the center (veins) to margin, and deposition of gold. [source]


Geological and Geochemical Characteristics of the Hydrothermal Clay Alteration in South Korea

RESOURCE GEOLOGY, Issue 4 2000
Sang-Mo KOH
Abstract: Hydrothermally altered areas forming pyrophyllite-kaolin-sericite-alunite deposits are distributed in Chonnam and Kyongsang areas, Cretaceous volcanic field of the Yuchon Group. The Chonnam alteration area is located within depression zone which is composed of volcanic and granitic rocks of late Cretaceous age. The clay deposits of this area show the genetic relationship with silicic lava domes. The Kyongsang alteration area is mainly distributed within Kyongsang Basin comprising volcanic, sedimentary and granitic rocks of Cretaceous and Tertiary age. Most of the clay deposits of this area are closely related to cauldrons. Paleozoic clay deposit occurs in the contact zone between Precambrian Hongjesa granite gneiss and Paleozoic Jangsan quartzite of Choson Supergroup. Cretaceous igneous rocks of the both alteration areas belong to high K calc-alkaline series formed in the volcanic arc of continental margin by subduction-related magmatism. Chonnam igneous rocks show more enrichment of crustal components such as K, La, Ce, Sm, Nd and Ba, higher (La/Yb)cn ratio, and higher initial 87Sr/86Sr ratio (0. 708 to 0. 712) than those of Kyongsang igneous rocks. This might be due to the difference of degree of crustal contamination during Cretaceous magmatism. The most characteristic alteration minerals of Chonnam clay deposits are alunite, kaolin, quartz, pyrophyllite and diaspore which were formed by acidic solution. Those of Kyongsang clay deposits are sericite, quartz and pyrophyllite which were formed by weak acid and neutral solution. The formation ages of the clay deposits of two alteration areas range from 70. 1 to 81. 4 Ma and 39. 7 to 79. 4 Ma, respectively. The Daehyun clay deposit in Ponghwa area of Kyongsang province shows the alteration age range from 290 to 336 Ma. This result shows the different alteration episode from the hydrothermal alteration of Cretaceous to early Tertiary in the Kyongsang and Chonnam alteration areas. These data indicate, at least, three hydrothermal activities of Tertiary (middle to late Eocene), late Cretaceous (Santonian to Maastrichtian) and Paleozoic Carboniferous Periods in South Korea. [source]


Stable Isotope Study of the Langshan Polymetallic Mineral District, Inner Mongolia, China

RESOURCE GEOLOGY, Issue 1 2000
Ping DING
The lead isotope study shows that these deposits were probably formed from 2. 0 to 1. 5 Ga, and were deformed and metamorphosed 1. 45 Ga. Ore lead could be a mixture of mantle lead and crustal lead. The C and S isotope results indicate that these deposits were precipitated in closed or semi-closed rift basins, and the source of sulfur might be Proterozoic ocean sulfate. The H and O isotope results indicate that the ,D and ,18O values of rocks were changed by water-rock interaction during metamorphism and hydrothermal alteration. The scale of ,D and ,18O shift of rocks reflects the grade of metamorphism and alteration as well as the water-rock ratios. However, the water-rock ratios in the metamorphic processes of Langshan mineral district were relatively low, and the source of water during metamorphism is suggested to be ancient meteoric water. Based on isotopic results and the geological background, it is concluded that these deposits may belong to Proterozoic sedimentary exhalative (SEDEX) type. [source]


Geology and Genesis of the Superlarge Jinchang Gold Deposit, NE China

ACTA GEOLOGICA SINICA (ENGLISH EDITION), Issue 4 2008
JIA Guozhi
Abstract The superlarge Jinchang gold deposit is located in the joint area between the Taipingling uplift and the Laoheishan depression of the Xingkai Block in both eastern Jilin and eastern Heilongjiang Province. Wall rocks of the gold deposits are the Neoproterozoic Huangsong Group of metamorphic rocks. Yanshanian magmatism in this region can be divided into 5 phases, the diorite, the graphic granite, the granite, the granite porphyry and the diorite porphyrite, which resulted in the magmatic domes and cryptoexplosive breecia chimney followed by large-scale hydrothermal alteration. Gold mineralization is closely related to the fourth and fifth phase of magmatism. According to the occurrences, gold ores can be subdivided into auriferous pyritized quartz vein, auriferous quartz-pyrite vein, auriferous polymetallic sulfide quartz vein and auriferous pyritized calcite vein. The ages of the gold deposit are ranging from 122.53 to 119.40 Ma. The ore bodies were controlled by a uniform tectono-magmatic hydrothermal alteration system that the ore-forming materials were deep derived from and the ore-forming fluids were dominated by magmatic waters with addition of some atmospheric water in the later phase of mineralization. Gold mineralization took place in an environment of medium to high temperatures and medium pressures. Ore-forming fluids were the K+ -Na+ -Ca2+ -Cl, -SO42- type and characterized by medium salinity or a slightly higher, weak alkaline and weak reductive. Au in the ore-forming fluids was transported as complexes of [Au (HS)2],, [AuCl2],, [Au(CO2)], and [Au(HCO3)2],. Along with the decline of temperatures and pressures, the ore-forming fluids varied from acidic to weak acidic and then to weak alkaline, which resulted in the dissociation of the complex and finally the precipitation of the gold. [source]


40Ar- 39Ar Age of K-feldspar from K-feldspar Granite in the Qiaohuote Copper Deposit, Bayanbulak, Xinjiang, and Its Geological Significance

ACTA GEOLOGICA SINICA (ENGLISH EDITION), Issue 2 2004
WANG Zhiliang
Abstract, By using the 40Ar- 39Ar chronological method to date K-feldspar from K-feldspar granite in the Qiaohuote copper district, the authors obtained a plateau age of 274.78±0.44 Ma and an isochron age of 272.7±3.0 Ma. Because there is no tectonic deformation overprinted or hydrothermal alteration in the K-feldspar granite intrusion after its emplacement, the 40Ar- 39Ar age represents the crystallization age of K-feldspar in K-feldspar granite, i.e. the late crystallization age of the K-feldspar granite intrusion, which indicates that the K-feldspar granite formed in the intraplate extensional stage during the Early Permian. Moreover, based on the spatial relationship between the K-feldspar granite intrusion and copper orebodies, variations of copper ore grade, REE characteristics of K-feldspar granite and copper ores, and H and O isotopic compositions of fluid inclusions in copper ores, the metallogenesis of the Qiaohuote copper deposit is directly related to intrusive activities of the K-feldspar granite, and thus the crystallization age of K-feldspar in the granite approximately approaches the metallogenic epoch of the Qiaohuote copper deposit. [source]