Hydrophobic Substituent (hydrophobic + substituent)

Distribution by Scientific Domains


Selected Abstracts


New Simple Hydrophobic Proline Derivatives as Highly Active and Stereoselective Catalysts for the Direct Asymmetric Aldol Reaction in Aqueous Medium

ADVANCED SYNTHESIS & CATALYSIS (PREVIOUSLY: JOURNAL FUER PRAKTISCHE CHEMIE), Issue 17 2008
Francesco Giacalone
Abstract New 4-substituted acyloxyproline derivatives with different hydrophobic properties of the acyl group were easily synthesized and used as catalysts in the direct asymmetric aldol reaction between cyclic ketones (cyclohexanone and cyclopentanone) and several substituted benzaldehydes. Reactions were carried out using water, this being the best reaction medium examined. Screening of these catalysts showed that compounds bearing the most hydrophobic acyl chains [4-phenylbutanoate and 4-(pyren-1-yl)butanoate] provided better results. The latter catalysts were successfully used in only 2 mol% at room temperature without additives to give aldol products in excellent stereoselectivities. These results demonstrate that derivatization of the proline moiety with the proper simple hydrophobic substituent in the 4-position can furnish highly active and stereoselective catalysts without the need of additional chiral backbones in the molecule. Finally, an explanation of the observed stereoselectivities in the presence of water is provided. [source]


Toward the development of new medicinal leads with selectivity for protein kinase C isozymes

THE CHEMICAL RECORD, Issue 4 2005
Kazuhiro Irie
Abstract Tumor promoters such as phorbol esters bind strongly to protein kinase C (PKC) isozymes to induce their activation. Since each PKC isozyme is involved in diverse biological events in addition to tumor promotion, the isozymes serve as promising therapeutic targets. Tumor promoters bind to the C1A and/or C1B domain of conventional (,, ,I, ,II, and ,) and novel PKC isozymes (,, ,, ,, and ,). As these C1 domains play differential roles in PKC activation and their translocation in cells, the development of agents with binding selectivity for individual C1 domains is a pressing need. For this purpose, we established a synthetic C1 peptide library of all PKC isozymes. The library enabled us to identify indolactam-V (1) as a promising lead compound. Our diverse structure,activity studies on 1 indicated that the position of the hydrophobic substituent on the indole ring dominates the PKC isozyme- and C1 domain-selective binding rather than conformation of the nine-membered lactam. Moreover, we suggested that the indole ring of 1 could be involved in the CH/, interaction with Pro-11 of the C1B domain of PKC,. This invaluable information will lead to the structural optimization of the PKC, ligand as exemplified by the design and synthesis of naphtholactam-V8 (21). © 2005 The Japan Chemical Journal Forum and Wiley Periodicals, Inc. Chem Rec 5: 185,195; 2005: Published online in Wiley InterScience (www.interscience.wiley.com) DOI 10.1002/tcr.20044 [source]


Structural effects of macrocyclic compounds and their partition in sodium dodecylsulphate aqueous solutions

JOURNAL OF APPLIED CRYSTALLOGRAPHY, Issue 3-1 2003
Delia Chillura-Martino
The partition of 1,4,7,10,13,16-esaoxacyclooctadecane (18C6), 4,7,13,16-tetraoxa-1,10-diazacyclooctadecane (2.2), 2,5,8,11,14,17-esaoxabicyclo[16.4.0]dicosane (B18C6) and 2,5,8,15,18,21-esoxatricyclo[20.4.0.09.14]esacosane (Cy218C6) in sodium dodecyl sulfate (SDS) aqueous solutions and their effect on the structure of surfactant aggregates has been investigated by small-angle neutron scattering. Results from data analysis have shown that by increasing macrocycle concentration the SDS micelles dimensions reduce for all systems investigated. At the same time information on macrocycles partition between the micellar and the continuous phase have been obtained. It was found that an appreciable portion of macrocyclic compounds is located in micellar aggregates; in particular, the amount of B18C6 and Cy218C6 results larger than that of 18C6 and 2.2. It was found that 18C6 and 2.2 molecules interact with charged surface of SDS micelles only via complexes formation between the sodium ions and the macrocycles. B18C6 and Cy218C6 interact either via complexes formation with the charged surface or with hydrophobic region inside the micelle, as a consequence of the presence of hydrophobic substituents. It was concluded that Cy218C6 fraction present inside the micelles is located in the core, while the B18C6 fraction is located in the palisade. [source]


DNA Compaction by Divalent Cations: Structural Specificity Revealed by the Potentiality of Designed Quaternary Diammonium Salts

CHEMBIOCHEM, Issue 3 2004
Anatoly A. Zinchenko
Abstract DNA interaction with quaternary diammonium dications, R(CH3)2N+(CH2)nN+(CH3)2R, having various intercharge distances, lengths, and branching, and the chemical nature of the hydrophobic substituents were investigated by fluorescent microscopy and circular dichroism (CD) spectroscopy to reveal their structural specificity for binding to DNA. The conformational behavior of DNA was found to be highly sensitive to the structure of the dications with separated charges. The distance between two ammonium groups greatly influences the compaction activity of the dications. To explain this situation, we proposed a model that demonstrates that the charge density of the dication and the geometric fit between DNA phosphates and the ammonium groups in the dications play an important role in providing efficient DNA collapse. Elongation of the alkyl substituents (R) in the diammonium salts from ethyl to hexyl did not generate any significant alterations in the compaction activities, whereas the branching of substituents caused a drastic decrease in their compaction ability. Based on the results of CD spectroscopy, it was found that the ability of the dications to provoke a DNA transition from the B-form to A-form was also specific: it depended on their intercharge distances and was independent of the length of alkyl substituents. [source]