Home About us Contact | |||
Hydrophobic Proteins (hydrophobic + protein)
Selected AbstractsThe interferon alpha induced protein ISG12 is localized to the nuclear membraneFEBS JOURNAL, Issue 22 2001Pia M. Martensen Interferons exert their biological function mainly through the activation of interferon-stimulated genes (ISGs). ISG12 (originally designated p27) belongs to a family of small, interferon , inducible genes of unknown function. We have determined the 5, end sequence of ISG12 cDNA from the human cell lines HeLa and AMA by RACE. Comparing this sequence to ISG12 sequences in the expressed sequence tag (EST) database revealed the presence of two alternative splice variants of ISG12 in human cells exhibiting the same open reading frame. We have sequenced the promoter region of the ISG12 gene and found ISRE, IRF1/IRF2, and STAT elements correlating to the interferon , inducibility of the gene. Subsequently, we have expressed human ISG12, a 12-kDa hydrophobic protein in the baculovirus expression system and with a C-terminal FLAG-tag in the human cell line 293. Recombinant ISG12 sediments in the nuclear envelope in both cell types. Finally, we have been able to demonstrate the prevalence of the ISG12 gene product in the nuclear envelope of HeLa cells treated with interferon , by immunocytochemical analyses. ISG12 is the first interferon induced protein found localizing to the nuclear envelope. [source] Online CIEF-ESI-MS in glycerol,water media with a view to hydrophobic protein applicationsELECTROPHORESIS, Issue 23 2009Meriem Mokaddem Abstract A new online coupling of CIEF with ESI-MS has been developed in glycerol,water media. This improved protocol provides: (i) the electric continuity during the whole analysis by a discontinuous filling of the capillary with 60:40 (cm/cm) catholyte/proteins,ampholyte mixture; (ii) the use of an anticonvective medium, i.e. 30:70 glycerol/water, v/v, compatible with MS detection and as an aid to hydrophobic protein solubilization and (iii) the use of unmodified bare fused-silica capillaries, as the glycerol/water medium strongly reduces EOF. Focusing was performed in positive polarity and cathodic mobilization was achieved by both voltage and pressure application. The setup was optimized with respect to analysis time, sensitivity and precision on pI determination. The optimized anolyte and catholyte were composed of 50,mM formic acid/1,mM glutamic acid (pH 2.35) and 100,mM NH3/1,mM lysine (pH 10.6), respectively. The effects of ampholyte concentration, focusing time and ESI parameters were presented for model proteins and discussed. This new integrated protocol should be an easy and effective additional tool in the field of proteome analysis, providing a means for the characterization of a large number of hydrophilic and hydrophobic proteins. [source] Effects of porcine 25 kDa amelogenin and its proteolytic derivatives on bone sialoprotein expressionJOURNAL OF PERIODONTAL RESEARCH, Issue 5 2010Y. Nakayama Nakayama Y, Yang L, Mezawa M, Araki S, Li Z, Wang Z, Sasaki Y, Takai H, Nakao S, Fukae M, Ogata Y. Effects of porcine 25 kDa amelogenin and its proteolytic derivatives on bone sialoprotein expression. J Periodont Res 2010; 45: 602,611. © 2010 John Wiley & Sons A/S Background and Objective:, Amelogenins are hydrophobic proteins that are the major component of developing enamel. Enamel matrix derivative has been used for periodontal regeneration. Bone sialoprotein is an early phenotypic marker of osteoblast differentiation. In this study, we examined the ability of porcine amelogenins to regulate bone sialoprotein transcription. Material and Methods:, To determine the molecular basis of the transcriptional regulation of the bone sialoprotein gene by amelogenins, we conducted northern hybridization, transient transfection analyses and gel mobility shift assays using the osteoblast-like ROS 17/2.8 cells. Results:, Amelogenins (100 ng/mL) up-regulated bone sialoprotein mRNA at 3 h, with maximal mRNA expression occurring at 12 h (25 and 20 kDa) and 6 h (13 and 6 kDa). Amelogenins (100 ng/mL, 12 h) increased luciferase activities in pLUC3 (nucleotides ,116 to +60), and 6 kDa amelogenin up-regulated pLUC4 (nucleotides ,425 to +60) activity. The tyrosine kinase inhibitor inhibited amelogenin-induced luciferase activities, whereas the protein kinase A inhibitor abolished 25 kDa amelogenin-induced bone sialoprotein transcription. The effects of amelogenins were abrogated by 2-bp mutations in the fibroblast growth factor 2 response element (FRE). Gel-shift assays with radiolabeled FRE, homeodomain-protein binding site (HOX) and transforming growth factor-beta1 activation element (TAE) double-strand oligonucleotides revealed increased binding of nuclear proteins from amelogenin-stimulated ROS 17/2.8 cells at 3 h (25 and 13 kDa) and 6 h (20 and 6 kDa). Conclusion:, These results demonstrate that porcine 25 kDa amelogenin and its proteolytic derivatives stimulate bone sialoprotein transcription by targeting FRE, HOX and TAE in the bone sialoprotein gene promoter, and that full-length amelogenin and amelogenin cleavage products are able to regulate bone sialoprotein transcription via different signaling pathways. [source] Ion channel formation and membrane-linked pathologies of misfolded hydrophobic proteins: The role of dangerous unchaperoned moleculesCLINICAL AND EXPERIMENTAL PHARMACOLOGY AND PHYSIOLOGY, Issue 9 2002Joseph I Kourie Summary 1.,Protein,membrane interaction includes the interaction of proteins with intrinsic receptors and ion transport pathways and with membrane lipids. Several hypothetical interaction models have been reported for peptide-induced membrane destabilization, including hydrophobic clustering, electrostatic interaction, electrostatic followed by hydrophobic interaction, wedge × type incorporation and hydrophobic mismatch. 2.,The present review focuses on the hypothesis of protein interaction with lipid membranes of those unchaperoned positively charged and misfolded proteins that have hydrophobic regions. We advance the hypothesis that protein misfolding that leads to the exposure of hydrophobic regions of proteins renders them potentially cytotoxic. Such proteins include prion, amyloid , protein (A,P), amylin, calcitonin, serum amyloid and C-type natriuretic peptides. These proteins have the ability to interact with lipid membranes, thereby inducing membrane damage and cell malfunction. 3.,We propose that the most significant mechanism of membrane damage induced by hydrophobic misfolded proteins is mediated via the formation of ion channels. The hydrophobicity based toxicity of several proteins linked to neurodegenerative pathologies is similar to those observed for antibacterial toxins and viral proteins. 4.,It is hypothesized that the membrane damage induced by amyloids, antibacterial toxins and viral proteins represents a common mechanism for cell malfunction, which underlies the associated pathologies and cytotoxicity of such proteins. [source] |