Hydrophobic Groups (hydrophobic + groups)

Distribution by Scientific Domains


Selected Abstracts


Effects of chemical structure on the properties of carboxylate-type copolymer dispersant for coal-water slurry

AICHE JOURNAL, Issue 9 2009
Renfu Xu
Abstract In this study, a series of carboxylate-type copolymer dispersants were prepared. The effects of chemical structures of the copolymer dispersants, including the molecular weight, kind, quantity and ratio of hydrophilic/hydrophobic groups, and side chain length, on the solid loading, apparent viscosity, zeta potential, rheological behavior, and stability of coal-water slurry (CWS) prepared from Dongtan, Yima, and Datong coals were systematically investigated. The dispersion performance of the copolymer can be improved by adjusting its chemical structures, and the dispersion mechanism was discussed. In addition, a high solid loading CWS with excellent stability toward settling can be achieved by means of the copolymer dispersant and carboxymethyl cellulose sodium salt (CMC-Na). Experiments have proved that the copolymer has the potential to be developed as a new high-effective dispersant for CWS. © 2009 American Institute of Chemical Engineers AIChE J, 2009 [source]


Synthesis and Molecular Structures of Nickel(II) and Cobalt(III) Complexes with 2-(Arylimino)-3-(hydroxyimino)butane

EUROPEAN JOURNAL OF INORGANIC CHEMISTRY, Issue 14 2003
Ennio Zangrando
Abstract We report new series of NiII and CoIII complexes with nitrogen-donor chelating ligands of the (E,E)-2-(arylimino)-3-(hydroxyimino)butane type (Ar,N,N,OH). These ligands are characterized by a hydrophilic (OH group) and a hydrophobic region (aryl group). NiII derivatives were obtained either as trimers of formula [Ni3(Ar,N,N,OH)3Br4(OH)][Br], with the hydrophobic groups oriented on the same side, or as bis(chelated) derivatives with cis geometry, depending on the steric hindrance of the aryl groups. CoIII complexes were obtained only as bis(chelated) derivatives, with the two ligands coplanar. The "iso -oriented" arrangement of ligands in bis(chelated) CoIII complexes is favored by weak interactions between the two ligands, namely O,H···O hydrogen bond and stacking interactions between the aryl groups. CoIII complexes might find application as catalysts for living or controlled radical polymerization of polar olefins, and preliminary results are reported. (© Wiley-VCH Verlag GmbH & Co. KGaA, 69451 Weinheim, Germany, 2003) [source]


A Novel Biodegradable and Light-Breakable Diblock Copolymer Micelle for Drug Delivery,

ADVANCED ENGINEERING MATERIALS, Issue 3 2009
Zhigang Xie
A facile approach to the preparation of light-responsive copolymer micelles is developed. This approach is based on the attachment of hydrophobic groups to one block of a diblock copolymer via a light-sensitive linkage. The micelles can be dissociated under light irradiation and release the encapsulated pyrene. The obtained polymeric micelles are expected to be of use as drug-delivery vehicles. [source]


Hydrophobic Functional Group Initiated Helical Mesostructured Silica for Controlled Drug Release,

ADVANCED FUNCTIONAL MATERIALS, Issue 23 2008
Lei Zhang
Abstract In this paper a novel one-step synthetic pathway that controls both functionality and morphology of functionalized periodic helical mesostructured silicas by the co-condensation of tetraethoxysilane and hydrophobic organoalkoxysilane using achiral surfactants as templates is reported. In contrast to previous methods, the hydrophobic interaction between hydrophobic functional groups and the surfactant as well as the intercalation of hydrophobic groups into the micelles are proposed to lead to the formation of helical mesostructures. This study demonstrates that hydrophobic interaction and intercalation can promote the production of long cylindrical micelles, and that the formation of helical rod-like morphology is attributed to the spiral transformation from bundles of hexagonally-arrayed and straight rod-like composite micelles due to the reduction in surface free energy. It is also revealed that small amounts of mercaptopropyltrimethoxysilane, vinyltrimethoxysilane, and phenyltrimethoxysilane can cause the formation of helical mesostructures. Furthermore, the helical mesostructured silicas are employed as drug carriers for the release study of the model drug aspirin, and the results show that the drug release rate can be controlled by the morphology and helicity of the materials. [source]


Novel glycosaminoglycan mimetic (RGTA, RGD120) contributes to enhance skeletal muscle satellite cell fusion by increasing intracellular Ca2+ and calpain activity

JOURNAL OF CELLULAR PHYSIOLOGY, Issue 2 2005
M. Zimowska
Glycosaminoglycans (GAG) are classes of molecules that play an important role in cellular processes. The use of GAG mimetics called regenerating agent (RGTA) represents a tool to investigate the effect of GAG moiety on cellular behavior. A first member of the RGTA family (RG1192), a dextran polymers with defined amounts of sulfate, carboxymethyl, as well as hydrophobic groups (benzylamide), was shown to stimulate skeletal muscle repair after damage and myoblast differentiation. To obtain a comprehensive insight into the mechanism of action of GAG mimetics, we investigated the effect on myoblast differentiation of a novel RGTA, named RGD120, which was devoid of hydrophobic substitution and had ionic charge similar to heparin. Myoblasts isolated from adult rat skeletal muscles and grown in primary cultures were used in this study. We found that chronic treatment with RGD120 increased the growth of adult myoblasts and induced their precocious fusion into myotubes in vitro. It also partially overcame the inhibitory effect of the calpain inhibitor N -acetyl-leu-leu-norleucinal (ALLN) on these events. Western blot and zymography analyses revealed that milli calpain was slightly increased by RGD120 chronic treatment. In addition, using fluorescent probes (Indo-1 and Boc-leu-met-MAC), we demonstrated that RGD120 added to prefusing myoblast cultures accelerates myoblast fusion into myotubes, induced an increase of cytosolic free calcium concentration, and concomitantly an increase of intracellular calpain protease activity. Altogether, these results suggested that the efficiency of RGD120 in stimulating myogenesis might be in part explained through its effect on calcium mobilization as well as on the calpain amount and activity. © 2005 Wiley-Liss, Inc. [source]


DNA aptamers developed against a soman derivative cross-react with the methylphosphonic acid core but not with flanking hydrophobic groups

JOURNAL OF MOLECULAR RECOGNITION, Issue 3 2009
John G. Bruno
Abstract Twelve rounds of systematic evolution of ligands by exponential enrichment (SELEX) were conducted against a magnetic bead conjugate of the para -aminophenylpinacolylmethylphosphonate (PAPMP) derivative of the organophosphorus (OP) nerve agent soman (GD). The goal was to develop DNA aptamers that could scavenge GD in vivo, thereby reducing or eliminating the toxic effects of this dangerous compound. Aptamers were sequenced and screened in peroxidase-based colorimetric plate assays after rounds 8 and 12 of SELEX. The aptamer candidate sequences exhibiting the highest affinity for the GD derivative from round 8 also reappeared in several clones from round 12. Each of the highest affinity PAPMP-binding aptamers also bound methylphosphonic acid (MPA). In addition, the aptamer with the highest overall affinity for PAPMP carried a sequence motif (TTTAGT) thought to bind MPA based on previously published data (J. Fluoresc 18: 867,876, 2008). This sequence motif was found in several other relatively high affinity PAPMP aptamer candidates as well. In studies with the nerve agent GD, pre-incubation of a large molar excess of aptamer candidates failed to protect human butyrylcholinesterase (BuChE) from inhibition. With the aid of three-dimensional molecular modeling of the GD derivative it appears that a hydrophilic cleft sandwiched between the pinacolyl group and the p -aminophenyl ring might channel nucleotide interactions to the phosphonate portion of the immobilized GD derivative. However, bona fide GD free in solution may be repulsed by the negative phosphate backbone of aptamers and rotate its phosphonate and fluorine moieties away from the aptamer to avoid being bound. Future attempts to develop aptamers to GD might benefit from immobilizing the pinacolyl group of bona fide GD to enhance exposure of the phosphonate and fluorine to the random DNA library. Copyright © 2008 John Wiley & Sons, Ltd. [source]


Synthesis and SFM Study of Comb-Like Poly(4-vinylpyridinium) Salts and Their Complexes with Surfactants

MACROMOLECULAR RAPID COMMUNICATIONS, Issue 13 2006
Marat O. Gallyamov
Abstract Summary: Poly(4-vinylpyridinium) bromides containing octyl and dodecyl pendant groups were synthesized. Bromide anions in these polymer salts were substituted with dodecylsulfate and bis(2-ethylhexylsuccinate) anions using ion-exchange reactions. Initially, P4VP and its derivatives loaded with hydrophobic groups were deposited on a mica surface from diluted solutions in chloroform for visualization. Images of single adsorbed macromolecules were obtained using scanning force microscopy. Original P4VP chains form partially compacted self-intersecting coils. Loading the polymer chains with large hydrophobic groups and especially the increase in the number of alkyl tails (see Figure) per monomer unit of the polymer chain leads to the stretching of the coils, and the comb-like macromolecules adopt more and more extended self-avoiding 2D conformations when deposited on the substrate. Polymer chains with large hydrophobic groups and increasing number of alkyl tails per monomer unit of the polymer chain. [source]


Generation of Selective TACE Inhibitors: Ligand and Structure Based Molecular Modeling, Virtual Screening, Counter Pharmacophore Screening to Get Selective Molecules

MOLECULAR INFORMATICS, Issue 11-12 2009
Malkeet, Singh Bahia
Abstract This study describes the ligand based as well as structure based molecular modeling and virtual screening of selective tumor necrosis factor-, converting enzyme (TACE) inhibitors. In ligand based molecular modeling, two statistically reliable pharmacophore models HypoA1 and HypoB1 were generated using a same training set of 22,molecules. HypoA1,consists of two hydrogen bond acceptor and three hydrophobic groups whereas HypoB1 consists of one hydrogen bond donor, one ring aromatic and three hydrophobic groups. Virtual screening was performed with both models in in-house database of 1.2,million molecules. To remove non selective hits from screened molecules, a counter pharmacophore was generated using inhibitors of MMP-1, an important enzyme involved in musculoskeletal degradation. In structure based molecular modeling, docking analysis was performed to explore the important interactions between ligands and protein. On comparison, HypoA1 and HypoB1 were found to be complementing with results of docking analysis suggesting high reliability of both models for their use in virtual screening/designing of new molecules. [source]


Hydrophobically modified polyelectrolytes II: synthesis and characterization of poly(acrylic acid-co-alkyl acrylate)

POLYMERS FOR ADVANCED TECHNOLOGIES, Issue 11-12 2001
Dong-qing Zhuang
Abstract A series of hydrophobically modified poly(acrylic acid)(RH -PAA) were synthesized by solution copolymerization of acrylic acid with a small amount of alkyl acrylate (alkyl chain with a length of 8, 12, 14, 16, 18) and their solution properties were also systematically studied. It was found that the random distribution of alkyl acrylate along the polymeric backbone imparts these new materials pronounced associating ability in aqueous solution and the associating abilities vary with the chain length of the hydrophobic groups. In dilute solution, intramolecular association is observed from the intrinsic viscosity and the dependence of the intrinsic viscosity on chain length and ionic strength is also discussed. In semiconcentration solution, the modified polymers exhibit viscosities of several orders of magnitude higher than the unmodified poly(sodium acrylate) due to the strong intermolecular hydrophobic association. And the viscosifying effects become more significant with the increasing length of the alkyl chain. The copolymer solutions are highly pseudoplastic. Evidences for the hydrophobically associating interaction between hydrocarbon groups are provided by the dependence of the Brookfield viscosity on concentration, temperature, shear rate, ionic strength and pH. Copyright © 2001 John Wiley & Sons, Ltd. [source]


6,-Methyl- B -norandrostenedione

ACTA CRYSTALLOGRAPHICA SECTION C, Issue 4 2010
L. C. R. Andrade
The title compound, C19H26O2, a B -norandrogen with a 6,-methyl group, is a recently identified and experimentally tested potent new aromatase inhibitor. It shares structural and physicochemical similarities both with the natural substrate of the enzyme, androstenedione, and with exemestane, another potent aromatase inhibitor having a 6-methylidene group. X-ray diffraction results indicate that the B -nor molecule and exemestane have nearly the same oxygen,oxygen and methyl,methyl separations, though they have distinct configurations of the hydrophobic groups at the 6-position. These structural comparisons allow correlations to be inferred between the active site geometry of the molecules and the aromatase inhibition power of the studied compound. [source]


Segregation of Inorganic Ions at Surfaces of Polar Nonaqueous Liquids

CHEMPHYSCHEM, Issue 10 2007
Lukasz Cwiklik Dr.
Abstract We present a short review of recent computational and experimental studies on surfaces of solutions of inorganic salts in polar nonaqueous solvents. These investigations complement our knowledge of aqueous interfaces and show that liquids such as formamide, liquid ammonia, and ethylene glycol can also surface-segregate large polarizable anions like iodide, albeit less efficiently than water. For liquids whose surfaces are covered with hydrophobic groups (e.g. methanol), the surface-ion effect all but disappears. Based on the present data a general picture of inorganic-ion solvation at the solution,vapor interface of polar liquids is outlined. [source]