Home About us Contact | |||
Hydrophobic Cluster (hydrophobic + cluster)
Selected AbstractsAmprenavir complexes with HIV-1 protease and its drug-resistant mutants altering hydrophobic clustersFEBS JOURNAL, Issue 18 2010Chen-Hsiang Shen The structural and kinetic effects of amprenavir (APV), a clinical HIV protease (PR) inhibitor, were analyzed with wild-type enzyme and mutants with single substitutions of V32I, I50V, I54V, I54M, I84V and L90M that are common in drug resistance. Crystal structures of the APV complexes at resolutions of 1.02,1.85 Å reveal the structural changes due to the mutations. Substitution of the larger side chains in PRV32I, PRI54M and PRL90M resulted in the formation of new hydrophobic contacts with flap residues, residues 79 and 80, and Asp25, respectively. Mutation to smaller side chains eliminated hydrophobic interactions in the PRI50V and PRI54V structures. The PRI84V,APV complex had lost hydrophobic contacts with APV, the PRV32I,APV complex showed increased hydrophobic contacts within the hydrophobic cluster and the PRI50V complex had weaker polar and hydrophobic interactions with APV. The observed structural changes in PRI84V,APV, PRV32I,APV and PRI50V,APV were related to their reduced inhibition by APV of six-, 10- and 30-fold, respectively, relative to wild-type PR. The APV complexes were compared with the corresponding saquinavir complexes. The PR dimers had distinct rearrangements of the flaps and 80,s loops that adapt to the different P1, groups of the inhibitors, while maintaining contacts within the hydrophobic cluster. These small changes in the loops and weak internal interactions produce the different patterns of resistant mutations for the two drugs. Structured digital abstract ,,MINT-7966480: HIV-1 PR (uniprotkb:P03366) and HIV-1 PR (uniprotkb:P03366) bind (MI:0407) by x-ray crystallography (MI:0114) [source] On the molecular basis of the recognition of angiotensin II (AII)FEBS JOURNAL, Issue 5 2003NMR structure of AII in solution compared with the X-ray structure of AII bound to the mAb Fab13 The high-resolution 3D structure of the octapeptide hormone angiotensin II (AII) in aqueous solution has been obtained by simulated annealing calculations, using high-resolution NMR-derived restraints. After final refinement in explicit water, a family of 13 structures was obtained with a backbone RMSD of 0.73 ± 0.23 Å. AII adopts a fairly compact folded structure, with its C-terminus and N-terminus approaching to within ,,7.2 Å of each other. The side chains of Arg2, Tyr4, Ile5 and His6 are oriented on one side of a plane defined by the peptide backbone, and the Val3 and Pro7 are pointing in opposite directions. The stabilization of the folded conformation can be explained by the stacking of the Val3 side chain with the Pro7 ring and by a hydrophobic cluster formed by the Tyr4, Ile5 and His6 side chains. Comparison between the NMR-derived structure of AII in aqueous solution and the refined crystal structure of the complex of AII with a high-affinity mAb (Fab131) [Garcia, K.C., Ronco, P.M., Verroust, P.J., Brunger, A.T., Amzel, L.M. (1992) Science257, 502,507] provides important quantitative information on two common structural features: (a) a U-shaped structure of the Tyr4-Ile5-His6-Pro7 sequence, which is the most immunogenic epitope of the peptide, with the Asp1 side chain oriented towards the interior of the turn approaching the C-terminus; (b) an Asx-turn-like motif with the side chain aspartate carboxyl group hydrogen-bonded to the main chain NH group of Arg2. It can be concluded that small rearrangements of the epitope 4,7 in the solution structure of AII are required by a mean value of 0.76 ± 0.03 Å for structure alignment and ,,1.27 ± 0.02 Å for sequence alignment with the X-ray structure of AII bound to the mAb Fab131. These data are interpreted in terms of a biological ,nucleus' conformation of the hormone in solution, which requires a limited number of structural rearrangements for receptor,antigen recognition and binding. [source] Response of native and denatured hen lysozyme to high pressure studied by 15N/1H NMR spectroscopyFEBS JOURNAL, Issue 6 2001Yuji O. Kamatari High-pressure 15N/1H NMR techniques were used to characterize the conformational fluctuations of hen lysozyme, in its native state and when denatured in 8 m urea, over the pressure range 30,2000 bar. Most 1H and 15N signals of native lysozyme show reversible shifts to low field with increasing pressure, the average pressure shifts being 0.069 ± 0.101 p.p.m. (1H) and 0.51 ± 0.36 p.p.m. (15N). The shifts indicate that the hydrogen bonds formed to carbonyl groups or water molecules by the backbone amides are, on average, shortened by ,,0.02 Å as a result of pressure. In native lysozyme, six residues in the , domain or at the ,/, domain interface have anomalously large nonlinear 15N and 1H chemical-shift changes. All these residues lie close to water-containing cavities, suggesting that there are conformational changes involving these cavities, or the water molecules within them, at high pressure. The pressure-induced 1H and 15N shifts for lysozyme denatured in 8 m urea are much more uniform than those for native lysozyme, with average backbone amide shifts of 0.081 ± 0.029 p.p.m. (1H) and 0.57 ± 0.14 p.p.m. (15N). The results show that overall there are no significant variations in the local conformational properties of denatured lysozyme with pressure, although larger shifts in the vicinity of a persistent hydrophobic cluster indicate that interactions in this part of the sequence may rearrange. NMR diffusion measurements demonstrate that the effective hydrodynamic radius of denatured lysozyme, and hence the global properties of the denatured ensemble, do not change detectably at high pressure. [source] Identification of key residues involved in mediating the in vivo anti-tumor/anti-endothelial activity of AlphastatinJOURNAL OF THROMBOSIS AND HAEMOSTASIS, Issue 4 2007C. A. STATON Summary., Background :,We have recently shown that Alphastatin, a 24-amino-acid peptide (ADSGEGDFLAEGGGVRGPRVVERH) derived from human fibrinogen has anti-endothelial properties in vitro and in vivo. Objectives:, The aim of this study was to determine the activity of a terminally modified (stabilized) form of Alphastatin in vitro and in vivo and to identify the key residues required for this activity. Methods:, The in vitro activity of modified Alphastatin, truncates and mutants was determined by endothelial cell (HuDMEC) tubule formation and migration. Active peptides were then assessed in vivo using syngeneic murine subcutaneous 4T1 mammary carcinomas. Results:, Modified Alphastatin-inhibited HuDMEC migration and tubule formation in response to multiple growth factors and caused a 45% inhibition in tumor growth when administered intravenously at 0.25 mg kg,1 (three times per week). Intravenous (i.v.) administration proved non-toxic at all doses investigated, whereas oral and intraperitoneal (i.p.) administration demonstrated neither anti-tumor activity nor toxicity. Truncations of Alphastatin revealed an 11-amino-acid peptide (DFLAEGGGVRG), termed AHN419, which inhibited endothelial cell activity in vitro; however, intravenous AHN419 caused a non-significant growth inhibition in vivo. Single amino acid substitutions to alanine along the entire length of Alphastatin indicated that additional residues outside the AHN419 sequence were required for full activity. Conclusions:, Terminal modification of Alphastatin altered the in vivo efficacy and these studies suggest that a hydrophobic cluster (Phe8, Leu9, Ala10 and Val15) is essential for the biological activity, but additional residues, including Ser3-Gly14, Pro18-Val20 and Arg23 are required for full inhibitory activity of Alphastatin. [source] The L49F mutation in alpha erythroid spectrin induces local disorder in the tetramer association region: Fluorescence and molecular dynamics studies of free and bound alpha spectrinPROTEIN SCIENCE, Issue 9 2009Yuanli Song Abstract The bundling of the N-terminal, partial domain helix (Helix C,) of human erythroid ,-spectrin (,I) with the C-terminal, partial domain helices (Helices A, and B,) of erythroid ,-spectrin (,I) to give a spectrin pseudo structural domain (triple helical bundle A,B,C,) has long been recognized as a crucial step in forming functional spectrin tetramers in erythrocytes. We have used apparent polarity and Stern,Volmer quenching constants of Helix C, of ,I bound to Helices A, and B, of ,I, along with previous NMR and EPR results, to propose a model for the triple helical bundle. This model was used as the input structure for molecular dynamics simulations for both wild type (WT) and ,I mutant L49F. The simulation output structures show a stable helical bundle for WT, but not for L49F. In WT, four critical interactions were identified: two hydrophobic clusters and two salt bridges. However, in L49F, the region downstream of Helix C, was unable to assume a helical conformation and one critical hydrophobic cluster was disrupted. Other molecular interactions critical to the WT helical bundle were also weakened in L49F, possibly leading to the lower tetramer levels observed in patients with this mutation-induced blood disorder. [source] Interdomain side-chain interactions in human ,D crystallin influencing folding and stabilityPROTEIN SCIENCE, Issue 8 2005Shannon L. Flaugh Abstract Human ,D crystallin (H,D-Crys) is a two domain, ,-sheet eye lens protein that must remain soluble throughout life for lens transparency. Single amino acid substitutions of H,D-Crys are associated with juvenile-onset cataracts. Features of the interface between the two domains conserved among ,-crystallins are a central six-residue hydrophobic cluster, and two pairs of interacting residues flanking the cluster. In H,D-Crys these pairs are Gln54/Gln143 and Arg79/Met147. We previously reported contributions of the hydrophobic cluster residues to protein stability. In this study alanine substitutions of the flanking residue pairs were constructed and analyzed. Equilibrium unfolding/refolding experiments at 37°C revealed a plateau in the unfolding/refolding transitions, suggesting population of a partially folded intermediate with a folded C-terminal domain (C-td) and unfolded N-terminal domain (N-td). The N-td was destabilized by substituting residues from both domains. In contrast, the C-td was not significantly affected by substitutions of either domain. Refolding rates of the N-td were significantly decreased for mutants of either domain. In contrast, refolding rates of the C-td were similar to wild type for mutants of either domain. Therefore, domain interface residues of the folded C-td probably nucleate refolding of the N-td. We suggest that these residues stabilize the native state by shielding the central hydrophobic cluster from solvent. Glutamine and methionine side chains are among the residues covalently damaged in aged and cataractous lenses. Such damage may generate partially unfolded, aggregation- prone conformations of H,D-Crys that could be significant in cataract. [source] Contributions of hydrophobic domain interface interactions to the folding and stability of human ,D-crystallinPROTEIN SCIENCE, Issue 3 2005Shannon L. Flaugh Abstract Human ,D-crystallin (H,D-Crys) is a monomeric eye lens protein composed of two highly homologous ,-sheet domains. The domains interact through interdomain side chain contacts forming two structurally distinct regions, a central hydrophobic cluster and peripheral residues. The hydrophobic cluster contains Met43, Phe56, and Ile81 from the N-terminal domain (N-td) and Val132, Leu145, and Val170 from the C-terminal domain (C-td). Equilibrium unfolding/refolding of wild-type H,D-Crys in guanidine hydrochloride (GuHCl) was best fit to a three-state model with transition midpoints of 2.2 and 2.8 M GuHCl. The two transitions likely corresponded to sequential unfolding/refolding of the N-td and the C-td. Previous kinetic experiments revealed that the C-td refolds more rapidly than the N-td. We constructed alanine substitutions of the hydrophobic interface residues to analyze their roles in folding and stability. After purification from E. coli, all mutant proteins adopted a native-like structure similar to wild type. The mutants F56A, I81A, V132A, and L145A had a destabilized N-td, causing greater population of the single folded domain intermediate. Compared to wild type, these mutants also had reduced rates for productive refolding of the N-td but not the C-td. These data suggest a refolding pathway where the domain interface residues of the refolded C-td act as a nucleating center for refolding of the N-td. Specificity of domain interface interactions is likely important for preventing incorrect associations in the high protein concentrations of the lens nucleus. [source] Allosteric transition pathways in the lactose repressor protein core domains: Asymmetric motions in a homodimerPROTEIN SCIENCE, Issue 11 2003Terence C. Flynn Abstract The crystal structures of lactose repressor protein (LacI) provide static endpoint views of the allosteric transition between DNA- and IPTG-bound states. To obtain an atom-by-atom description of the pathway between these two conformations, motions were simulated with targeted molecular dynamics (TMD). Strikingly, this homodimer exhibited asymmetric dynamics. All asymmetries observed in this simulation are reproducible and can begin on either of the two monomers. Asymmetry in the simulation originates around D149 and was traced back to the pre-TMD equilibrations of both conformations. In particular, hydrogen bonds between D149 and S193 adopt a variety of configurations during repetitions of this process. Changes in this region propagate through the structure via noncovalent interactions of three interconnected pathways. The changes of pathway 1 occur first on one monomer. Alterations move from the inducer-binding pocket, through the N-subdomain ,-sheet, to a hydrophobic cluster at the top of this region and then to the same cluster on the second monomer. These motions result in changes at (1) side chains that form an interface with the DNA-binding domains and (2) K84 and K84', which participate in the monomer,monomer interface. Pathway 2 reflects consequent reorganization across this subunit interface, most notably formation of a H74-H74rsquo; ,-stacking intermediate. Pathway 3 extends from the rear of the inducer-binding pocket, across a hydrogen-bond network at the bottom of the pocket, and transverses the monomer,monomer interface via changes in H74 and H74rsquo;. In general, intermediates detected in this study are not apparent in the crystal structures. Observations from the simulations are in good agreement with biochemical data and provide a spatial and sequential framework for interpreting existing genetic data. [source] The effects of disulfide bonds on the denatured state of barnasePROTEIN SCIENCE, Issue 12 2000Jane Clarke Abstract The effects of engineered disulfide bonds on protein stability are poorly understood because they can influence the structure, dynamics, and energetics of both the native and denatured states. To explore the effects of two engineered disulfide bonds on the stability of barnase, we have conducted a combined molecular dynamics and NMR study of the denatured state of the two mutants. As expected, the disulfide bonds constrain the denatured state. However, specific extended ,-sheet structure can also be detected in one of the mutant proteins. This mutant is also more stable than would be predicted. Our study suggests a possible cause of the very high stability conferred by this disulfide bond: the wild-type denatured ensemble is stabilized by a nonnative hydrophobic cluster, which is constrained from occurring in the mutant due to the formation of secondary structure. [source] Amprenavir complexes with HIV-1 protease and its drug-resistant mutants altering hydrophobic clustersFEBS JOURNAL, Issue 18 2010Chen-Hsiang Shen The structural and kinetic effects of amprenavir (APV), a clinical HIV protease (PR) inhibitor, were analyzed with wild-type enzyme and mutants with single substitutions of V32I, I50V, I54V, I54M, I84V and L90M that are common in drug resistance. Crystal structures of the APV complexes at resolutions of 1.02,1.85 Å reveal the structural changes due to the mutations. Substitution of the larger side chains in PRV32I, PRI54M and PRL90M resulted in the formation of new hydrophobic contacts with flap residues, residues 79 and 80, and Asp25, respectively. Mutation to smaller side chains eliminated hydrophobic interactions in the PRI50V and PRI54V structures. The PRI84V,APV complex had lost hydrophobic contacts with APV, the PRV32I,APV complex showed increased hydrophobic contacts within the hydrophobic cluster and the PRI50V complex had weaker polar and hydrophobic interactions with APV. The observed structural changes in PRI84V,APV, PRV32I,APV and PRI50V,APV were related to their reduced inhibition by APV of six-, 10- and 30-fold, respectively, relative to wild-type PR. The APV complexes were compared with the corresponding saquinavir complexes. The PR dimers had distinct rearrangements of the flaps and 80,s loops that adapt to the different P1, groups of the inhibitors, while maintaining contacts within the hydrophobic cluster. These small changes in the loops and weak internal interactions produce the different patterns of resistant mutations for the two drugs. Structured digital abstract ,,MINT-7966480: HIV-1 PR (uniprotkb:P03366) and HIV-1 PR (uniprotkb:P03366) bind (MI:0407) by x-ray crystallography (MI:0114) [source] Probing the role of oligomerization in the high thermal stability of Pyrococcus furiosus ornithine carbamoyltransferase by site-specific mutantsFEBS JOURNAL, Issue 14 2001Bernard Clantin The Pyrococcus furiosus ornithine carbamoyltransferase (OTCase) is extremely heat stable and maintains 50% of its catalytic activity after 60 min at 100 °C. The enzyme has an unusual quaternary structure when compared to anabolic OTCases from mesophilic organisms. It is built up of four trimers arranged in a tetrahedral manner, while other anabolic enzymes are single trimers. Residues Trp21, Glu25, Met29 and Trp33 are located in the main interfaces that occur between the catalytic trimers within the dodecamer. They participate in either hydrophobic clusters or ionic interactions. In order to elucidate the role played by the oligomerization in the enzyme stability at very high temperatures, we performed mutagenesis studies of these residues. All the variants show similar catalytic activities and kinetic properties when compared to the wild-type enzyme, allowing the interpretation of the mutations solely on heat stability and quaternary structure. The W21A variant has only a slight decrease in its stability, and is a dodecamer. The variants E25Q, M29A, W33A, W21A/W33A and E25Q/W33A show that altering more drastically the interfaces results in a proportional decrease in heat stability, correlated with a gradual dissociation of dodecamers into trimers. Finally, the E25Q/M29A/W33A variant shows a very large decrease in heat stability and is a trimer. These results suggest that extreme thermal stabilization of this OTCase is achieved in part through oligomerization. [source] Functional and structural properties and in vitro digestibility of acylated hemp (Cannabis sativa L.) protein isolatesINTERNATIONAL JOURNAL OF FOOD SCIENCE & TECHNOLOGY, Issue 12 2009Shou-Wei Yin Summary The effects of succinylation and acetylation on some functional, structural properties and in vitro trypsin digestibility of hemp protein isolate (HPI) were investigated. The extent of acylation gradually increased from 0 to 60,70%, with the anhydride-to-protein ratio increasing from 0 to 1.0 g g,1. Size exclusion chromatography showed that succinylation led to formation of more soluble protein aggregate than acetylation, especially at anhydride levels higher than 0.1 g g,1. Succinylation led to gradual increase in protein solubility (PS) from 30 to 85,90%, while in the acetylation case, the PS was improved only at low anhydride levels, increasing from 30 to about 50% with anhydride-to-protein ratio increasing from 0 to 0.2 g g,1. At neutral pH, the emulsifying activity indexes (EAI) of HPI was 22.1 m2 g,1, and the EAI linearly and significantly increased with the extent of acylation. The EAIs of succinylated and acetylated HPI (1.0 g g,1) were 119.0 and 54.4 m2 g,1, respectively. Differential scanning calorimetry (DSC) and intrinsic fluorescence spectrum analyses indicated gradual structural unfolding of proteins, or exposure of hydrophobic clusters to the solvent, especially at higher anhydride levels. Additionally, the in vitro trypsin digestibility was significantly improved by the succinylation. The results indicated that the chemical acylation treatment (especially succinylation) could be applied to modify some selected functional properties of hemp proteins, especially PS and emulsifying ability. [source] The L49F mutation in alpha erythroid spectrin induces local disorder in the tetramer association region: Fluorescence and molecular dynamics studies of free and bound alpha spectrinPROTEIN SCIENCE, Issue 9 2009Yuanli Song Abstract The bundling of the N-terminal, partial domain helix (Helix C,) of human erythroid ,-spectrin (,I) with the C-terminal, partial domain helices (Helices A, and B,) of erythroid ,-spectrin (,I) to give a spectrin pseudo structural domain (triple helical bundle A,B,C,) has long been recognized as a crucial step in forming functional spectrin tetramers in erythrocytes. We have used apparent polarity and Stern,Volmer quenching constants of Helix C, of ,I bound to Helices A, and B, of ,I, along with previous NMR and EPR results, to propose a model for the triple helical bundle. This model was used as the input structure for molecular dynamics simulations for both wild type (WT) and ,I mutant L49F. The simulation output structures show a stable helical bundle for WT, but not for L49F. In WT, four critical interactions were identified: two hydrophobic clusters and two salt bridges. However, in L49F, the region downstream of Helix C, was unable to assume a helical conformation and one critical hydrophobic cluster was disrupted. Other molecular interactions critical to the WT helical bundle were also weakened in L49F, possibly leading to the lower tetramer levels observed in patients with this mutation-induced blood disorder. [source] |