Home About us Contact | |||
Hydrophilic Surface (hydrophilic + surface)
Selected AbstractsMultilayer poly(vinyl alcohol)-adsorbed coating on poly(dimethylsiloxane) microfluidic chips for biopolymer separationELECTROPHORESIS, Issue 1 2005Dapeng Wu Abstract A poly(dimethylsiloxane) (PDMS) microfluidic chip surface was modified by multilayer-adsorbed and heat-immobilized poly(vinyl alcohol) (PVA) after oxygen plasma treatment. The reflection absorption infrared spectrum (RAIRS) showed that 88% hydrolyzed PVA adsorbed more strongly than 100% hydrolyzed one on the oxygen plasma-pretreated PDMS surface, and they all had little adsorption on original PDMS surface. Repeating the coating procedure three times was found to produce the most robust and effective coating. PVA coating converted the original PDMS surface from a hydrophobic one into a hydrophilic surface, and suppressed electroosmotic flow (EOF) in the range of pH 3,11. More than 1 000,000 plates/m and baseline resolution were obtained for separation of fluorescently labeled basic proteins (lysozyme, ribonuclease B). Fluorescently labeled acidic proteins (bovine serum albumin, ,-lactoglobulin) and fragments of dsDNA ,X174 RF/HaeIII were also separated satisfactorily in the three-layer 88% PVA-coated PDMS microchip. Good separation of basic proteins was obtained for about 70 consecutive runs. [source] Synthetic Hydrophilic Materials with Tunable Strength and a Range of Hydrophobic Interactions,ADVANCED FUNCTIONAL MATERIALS, Issue 14 2010Olha Hoy Abstract The ability to vary, adjust, and control hydrophobic interactions is crucial in manipulating interactions between biological objects and the surface of synthetic materials in aqueous environment. To this end a grafted polymer layer (multi-component mixed polymer brush) is synthesized that is capable of reversibly exposing nanometer-sized hydrophobic fragments at its hydrophilic surface and of tuning, turning on, and turning off the hydrophobic interactions. The reversible switching occurs in response to changes in the environment and alters the strength and range of attractive interactions between the layer and hydrophobic or amphiphilic probes in water. The grafted layer retains its overall hydrophilicity, while local hydrophobic forces enable the grafted layer to sense and attract the hydrophobic domains of protein molecules dissolved in the aqueous environment. The hydrophobic interactions between the material and a hydrophobic probe are investigated using atomic force microscopy measurements and a long-range attractive and contact-adhesive interaction between the material and the probe is observed, which is controlled by environmental conditions. Switching of the layer exterior is also confirmed via protein adsorption measurements. [source] High-Field Scanning Probe Lithography in Hexadecane: Transitioning from Field Induced Oxidation to Solvent Decomposition through Surface Modification,ADVANCED MATERIALS, Issue 21 2007I. Suez High field scanning probe lithography in hexadecane leads to two different chemical reactions depending on surface hydrophilicity. On a hydrophilic surface, oxidation of the sample occurs; a hydrophobic surface, results in solvent decomposition and nanoscale deposition of etch resistant material. The features are characterized with photoelectron emission microscopy and are carbonaceous in nature with a highly cross-linked bonding network. Tone reversal in a fluorinated etch is achieved. [source] Tailoring surface properties of cellulose acetate membranes by low-pressure plasma processingJOURNAL OF APPLIED POLYMER SCIENCE, Issue 6 2010Chun Huang Abstract The aim of this study was to tailor the surface properties of cellulose acetate membranes using low-pressure plasma processing. Argon (Ar) plasma and Difluoromethane (CH2F2) plasma were used to control the surface wettabilities of cellulose acetate membranes. Optical emission spectroscopy was used to examine the various chemical species of low-pressure plasma processing. In this investigation, the plasma-treated surfaces were analyzed by X-ray photoelectron spectroscopy, while changes in morphology and surface roughness were determined with confocal laser scanning microscopy. Ar plasma activation resulted in hydrophilic surface. CH2F2 plasma deposited hydrophobic layer onto the cellulose acetate membrane because of strong fluorination of the top layer. The results reveal low-pressure plasma processing is an effective method to control the surface properties of cellulose acetate membranes. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2010 [source] Preparation and characterization of infection-resistant antibiotics-releasing hydrogels rods of poly[hydroxyethyl methacrylate- co -(poly(ethylene glycol)-methacrylate]: Biomedical application in a novel rabbit penile prosthesis modelJOURNAL OF BIOMEDICAL MATERIALS RESEARCH, Issue 1 2008M. Yakup Ar Abstract In this work, preparation and characterization of novel three different antibiotic loaded penile prosthesis in the rod form were investigated by copolymerization of 2-hydroxyethylmethacrylate (HEMA) with poly(ethylene glycol)-methacrylate, (PEG-MA). To achieve this goal, a series of novel copolymer hydrogels were prepared in rod form using HEMA and PEG-MA monomers via UV initiated photopolymerization. The thermal stability of the copolymer was found to be lowered by increase in the ratio of PEG-MA in the rod structure. Contact angle measurements on the surface of copolymer hydrogel demonstrated that the copolymer gave rise to a significant hydrophilic surface compared with pure poly(HEMA). The blood protein adsorption and platelet adhesion were significantly reduced on the surface of the copolymer hydrogels compared with control pure poly(HEMA). Poly(HEMA:PEG-MA;1:1)-1 formulation containing different antibiotics (20 mg antibiotic/g polymer) released about 90, 91, and 55% of the total loaded cephtriaxon, vancomycin, and gentamicin in 48 h at pH 7.4, respectively. Finally, antibiotics loaded biocompatible poly(HEMA:PEG-MA;1:1)-1 hydrogel compositions was used as a penile prosthesis in preventing cavernous tissue infections in a rabbit prosthesis model. The efficacy of the three different antibiotics loaded hydrogel system was evaluated in four different groups of rabbits, in which various infectious agents were inoculated. The animals were sacrificed after predetermined time periods, and clinical, histological and microbiological assessment on the implant side were carried out to detect infections. Eventually, we concluded that three different antibiotic loaded penile prostheses (i.e. poly(HEMA:PEG-MA;1:1)-1 hydrogel systems) were as effective as parenteral antibiotics applications. © 2007 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 2008 [source] Reverse osmosis of nonaqueous solutions through porous silica-zirconia membranesAICHE JOURNAL, Issue 2 2006Toshinori Tsuru Abstract Porous silica-zirconia membranes with pore diameters from 0.8 to 2 nm were prepared by a sol-gel process, and applied to the separation of alcohols (hexanol, octanol, decanol) and alkanes (hexane, decane, tetradecane) in ethanol solutions by reverse osmosis over the temperature range from 25 to 60° C. A silica-zirconia membrane with a pore diameter of 1 nm showed a molecular weight-cut-off (MWCO) of 200 in ethanol solutions. Rejection increased with the applied pressure, for both alcohol and alkane solutes. However, the rejection of alcohols was found to decrease with temperature, while that for alkanes remained nearly constant. The separation characteristics were examined for the following membrane parameters: solvent permeability, Lp, reflection coefficient, ,, and solute permeability, P, based on the Spiegler-Kedem equation. The viscosity of solutions and the diffusivity of alkanes and alcohol solutes in nano-sized pores were found to show a larger temperature dependency than in bulk. The diffusivity of alkane solutes showed the same temperature dependency as the viscosity of ethanol in nano-sized pores, while the diffusivity of alcohol solutes showed a larger temperature dependency than the viscosity of ethanol, probably because of a larger interaction between alcohol solutes and the hydrophilic surface of silica-zirconia membranes. Diffusion experiments were carried out to confirm the temperature dependency of the diffusivities in nano-sized pores. A bilayer model verified that solute permeabilities by reverse osmosis and diffusion experiments were consistent with each other. © 2005 American Institute of Chemical Engineers AIChE J, 2006 [source] Orexin-A is composed of a highly conserved C -terminal and a specific, hydrophilic N -terminal region, revealing the structural basis of specific recognition by the orexin-1 receptorJOURNAL OF PEPTIDE SCIENCE, Issue 7 2006Tomoyo Takai Abstract Orexins-A and B, also called hypocretins-1 and 2, respectively, are neuropeptides that regulate feeding and sleep-wakefulness by binding to two orphan G protein-coupled receptors named orexin-1 (OX1R) and orexin-2 (OX2R). The sequences and functions of orexins-A and B are similar to each other, but the high sequence homology (68%) is limited in their C -terminal half regions (residues 15,33). The sequence of the N -terminal half region of orexin-A (residues 1,14), containing two disulfide bonds, is very different from that of orexin-B. The structure of orexin-A was determined using two-dimensional homonuclear and 15N and 13C natural abundance heteronuclear NMR experiments. Orexin-A had a compact conformation in the N -terminal half region, which contained a short helix (III:Cys6-Gln9) and was fixed by the two disulfide bonds, and a helix-turn-helix conformation (I:Leu16-Ala23 and II:Asn25-Thr32) in the remaining C -terminal half region. The C -terminal half region had both hydrophobic and hydrophilic residues, which existed on separate surfaces to provide an amphipathic character in helices I and II. The nine residues on the hydrophobic surface are also well conserved in orexin-B, and it was reported that the substitution of each of them with alanine resulted in a significant drop in the functional potency at the receptors. Therefore, we suggest that they form the surface responsible for the main hydrophobic interaction with the receptors. On the other hand, the residues on the hydrophilic surface, together with the hydrophilic residues in the N -terminal half region that form a cluster, are known to make only small contributions to the binding to the receptors through similar alanine-scan experiments. However, since our structure of orexin-A showed that large conformational and electrostatical differences between orexins-A and B were rather concentrated in the N -terminal half regions, we suggest that the region of orexin-A is important for the preference for orexin-A of OX1R. Copyright © 2006 European Peptide Society and John Wiley & Sons, Ltd. [source] Ion-Exchange Loading of Yttrium Acetate as a Sintering Aid on Aluminum Nitride Powder via Aqueous ProcessingJOURNAL OF THE AMERICAN CERAMIC SOCIETY, Issue 11 2000Yasuhiro Shimizu A novel fabrication process of AlN ceramics via aqueous colloidal processing and pressureless sintering has been presented. The chemical stability of AlN powder in water was improved by the surface chemical modification with sebacic acid, while maintaining a hydrophilic surface. The treatment of the sebacic acid-modified powder with yttrium acetate tetrahydrate resulted in strong immobilization of Y3+ ions, as a sintering aid, at a highly dispersive level on the AlN powder surface through ion exchange with the free carboxyl groups of the sebacic acid molecules attached to the AlN surface. By selecting slip compositions for a well-deflocculated condition and firing conditions to burn out organic components in the slip cast compacts, a thermal conductivity of about 250 W/(m·K) could be attained by the pressureless sintering at 1900°C for 5 h. [source] Osteoblast Adhesion and Proliferation on Poly(3-octylthiophene) Thin FilmsMACROMOLECULAR BIOSCIENCE, Issue 3 2010Charlene Rincón Abstract In this study we assessed the suitability of semiconducting P3OT thin films (30,nm) to sustain attachment, spreading, and proliferation of MC3T3-E1 osteoblasts. Cell area correlated with surface wettability: area was larger on the more hydrophilic surface (TCPS) and lower on the more hydrophobic surface (P3OT). Cells were rounder, characterized by higher circularity values, on TCPS and Si compared to P3OT. P3OT proliferation rate at 24,h fell twofold after 48,h, then recovered at 72,h to a value significantly higher than that on TCPS. Presoaking experiments showed no evidence of cytotoxic effects or leachants from P3OT. Overall, we conclude that P3OT is a viable substrate for osteoblast attachment and proliferation. [source] Novel Amphiphilic Styrene-Based Block Copolymers for Induced Surface ReconstructionMACROMOLECULAR CHEMISTRY AND PHYSICS, Issue 1 2008Lutz Funk Abstract This paper describes the synthesis of amphiphilic block copolymers by living radical polymerization (NMP) of new styrene-like monomers. The polar monomers (ethylene oxide side chains and free hydroxyl- or amino-groups after deprotection) were polymerized in a "protected form" to adjust the solubility of the monomers. In this way high molar mass polymers with a narrow polydispersity (around or below 1.2) were accessible. In the bulk state hydrophobic and hydrophilic domains demix. By exposing thin films of these polymers to vacuum (air) or alternatively to water or a hydrophilic surface it becomes possible to switch the surface polarity reversibly between contact angles of about 105° and 83° as a result of surface reconstruction. Through side chains of different length and with different functionalities, it was possible to adjust the glass transition temperatures to values between ,2,°C to 140,°C for the hydrophilic blocks and ,30,°C to 100,°C for the hydrophobic block. The wide range of the glass temperatures allowed it to find a block copolymer system with a slow kinetic concerning the surface reconstruction process, so that a mechanistic examination of the process by AFM was possible. It got, thereby, possible to detect the break-up of the hydrophobic surface lamella and the upfold of the hydrophilic lamella in contact with water. [source] Temperature dependence of thermally-carbonized porous silicon humidity sensorPHYSICA STATUS SOLIDI (A) APPLICATIONS AND MATERIALS SCIENCE, Issue 8 2005M. Björkqvist Abstract Thermal carbonization of porous silicon (PS) at 820 °C under acetylene atmosphere is an appropriate method for humidity sensing purposes. It produces stable and hydrophilic surface still maintaining originally large specific surface area of PS. We report the temperature dependence of various electrical param- eters measured for the thermally-carbonized PS humidity sensor. Capacitance of the sensor in dry air (6 RH%) is almost constant at various temperatures, whereas in higher relative humidity values, the temperature dependence becomes evident. The resistance variation of the sensor is less dependent on RH as the temperature increases. While the capacitance showed linear behavior as a function of temperature, the resistance had a clear non-linear temperature dependence. In order to get information about the effects of frequency on capacitance values, we measured a phase angle and admittance of the sensor as a function of frequency at three different temperatures in low and high humidity. According to these results, it is preferable to operate this sensor construction using low frequency (<1 kHz). (© 2005 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim) [source] Disperse distribution of cationic amino acids on hydrophilic surface of helical wheel enhances antimicrobial peptide activityBIOTECHNOLOGY & BIOENGINEERING, Issue 2 2010Young Soo Kim Abstract The antimicrobial action of amphipathic antimicrobial peptides (AMPs) generally depends on perturbation of the bacterial membrane via electrostatic interactions promoting initial binding to the surface and hydrophobic interactions for pore formation into the membrane. Several studies have focused on the structure,activity relationship (SAR) of AMPs by modulation of structural parameters. However, modulation of one parameter commonly induces simultaneous changes in other parameters, making it difficult to investigate the specific influence of a single variable. In the present work, we investigated the distribution effect of cationic amino acids on the hydrophilic surface of the helical wheel using model AMPs composed of only lysine (K) and leucine (L) as representative cationic and hydrophobic residues, respectively, under conditions in which other parameters are fixed. Based on SAR analyses of ,-helical KL model AMPs displaying different cationic distributions, we propose that the dispersity of cationic amino acids on the hydrophilic surface is a factor that contributes to the antimicrobial activity of AMP. Moreover, antimicrobial activity is enhanced by rearrangement of cationic amino acids to promote dispersed distribution. We confirmed the cationic distribution effect using natural AMP-derived ,-helical CRAMP18 and its analogs. Our data show that accumulation of lysine shifts in the CRAMP18 analog leads to higher dispersion, and subsequently to improved antimicrobial activity. Therefore, we propose that the cationic distribution effect can be applied for the rational redesign of amino acid sequences to improve the antimicrobial activities of natural ,-helical AMPs, in combination with regulation of other known structural parameters. Biotechnol. Bioeng. 2010;107: 216,223. © 2010 Wiley Periodicals, Inc. [source] Molecular Mechanism of the Hydration of Candida antarctica Lipase B in the Gas Phase: Water Adsorption Isotherms and Molecular Dynamics SimulationsCHEMBIOCHEM, Issue 18 2009Ricardo J. F. Branco Dr. Abstract Hydration is a major determinant of activity and selectivity of enzymes in organic solvents or in gas phase. The molecular mechanism of the hydration of Candida antarctica lipase B (CALB) and its dependence on the thermodynamic activity of water (aw) was studied by molecular dynamics simulations and compared to experimentally determined water sorption isotherms. Hydration occurred in two phases. At low water activity, single water molecules bound to specific water binding sites at the protein surface. As the water activity increased, water networks gradually developed. The number of protein-bound water molecules increased linearly with aw, until at aw=0.5 a spanning water network was formed consisting of 311 water molecules, which covered the hydrophilic surface of CALB, with the exception of the hydrophobic substrate-binding site. At higher water activity, the thickness of the hydration shell increased up to 10 Å close to aw=1. Above a limit of 1600 protein-bound water molecules the hydration shell becomes unstable and the formation of pure water droplets occurs in these oversaturated simulation conditions. While the structure and the overall flexibility of CALB was independent of the hydration state, the flexibility of individual loops was sensitive to hydration: some loops, such as those part of the substrate-binding site, became more flexible, while other parts of the protein became more rigid upon hydration. However, the molecular mechanism of how flexibility is related to activity and selectivity is still elusive. [source] Novel Brush Polymers with Phosphorylcholine Bristle Ends: Synthesis, Structure, Properties, and BiocompatibilityADVANCED FUNCTIONAL MATERIALS, Issue 10 2009Gahee Kim Abstract New brush polymers with various numbers of bristle ends incorporating phosphorylcholine (PC) moieties are synthesized. The polymers are thermally stable up to 175,°C and form good-quality films with conventional spin-, roll-, and dip-coating, and subsequent drying processes. Interestingly, all these brush polymers, as a PC-containing polymer, demonstrate a stable molecular multi-bilayer structure in thin films that arise due to the efficient self-assembly of the bristles for temperatures <55,°C and PC-rich surfaces, and therefore successfully mimic natural cell-membrane surfaces. These brush-polymer films exhibit excellent water wettability and water sorption whilst retaining the remarkable molecular multi-bilayer structure, and thus have hydrophilic surfaces. These novel multi-bilayer structured films repel fibrinogen molecules and platelets from their surfaces but also have bactericidal effects on bacteria. Moreover, the brush-polymer films are found to provide comfortable surface environments for the successful anchoring and growth of HEp-2 cells, and to exhibit excellent biocompatibility in mice. These newly developed brush polymers are suitable for use in biomedical applications including medical devices and biosensors that require biocompatibility and the reduced possibility of post-operative infection. [source] Chemical modification of polyethersulfone nanofiltration membranes: A reviewJOURNAL OF APPLIED POLYMER SCIENCE, Issue 1 2009B. Van der Bruggen Abstract Polysulfone (PS) and poly(ether)sulfone (PES) are often used for synthesis of nanofiltration membranes, due to their chemical, thermal, and mechanical stability. The disadvantage for applying PS/PES is their high hydrophobicity, which increases membrane fouling. To optimize the performance of PS/PES nanofiltration membranes, membranes can be modified. An increase in membrane hydrophilicity is a good method to improve membrane performance. This article reviews chemical (and physicochemical) modification methods applied to increase the hydrophilicity of PS/PES nanofiltration membranes. Modification of poly(ether)sulfone membranes in view of increasing hydrophilicity can be carried out in several ways. Physical or chemical membrane modification processes after formation of the membrane create more hydrophilic surfaces. Such modification processes are (1) graft polymerization that chemically attaches hydrophilic monomers to the membrane surface; (2) plasma treatment, that introduces different functional groups to the membrane surface; and (3) physical preadsorption of hydrophilic components to the membrane surface. Surfactant modification, self-assembly of hydrophilic nanoparticles and membrane nitrification are also such membrane modification processes. Another approach is based on modification of polymers before membrane formation. This bulk modification implies the modification of membrane materials before membrane synthesis of the incorporation of hydrophilic additives in the membrane matrix during membrane synthesis. Sulfonation, carboxylation, and nitration are such techniques. To conclude, polymer blending also results in membranes with improved surface characteristics. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2009 [source] Poly[triaqua(,4 -4-carboxybenzenesulfonato-,4O:O,:O,,:O,,,)(4-carboxybenzenesulfonato-,O)strontium(II)]ACTA CRYSTALLOGRAPHICA SECTION C, Issue 2 2009G. Prochniak This study presents the coordination modes and two-dimensional network of a novel strontium(II) coordination polymer, [Sr(C7H5O5S)2(H2O)3]n. The eight-coordinate Sr2+ ion is in a distorted bis-disphenoidal coordination environment, surrounded by four sulfonate and one carboxyl O atom from five benzenesulfonate ligands, two of which are symmetry unique, and by three O atoms from three independent aqua ligands. The compound exhibits a monolayer structure with coordination bonds within and hydrogen bonds between the layers. The ,4 acid ligand bridges the metal ions in two dimensions to form a thick undulating monolayer with a hydrophobic interior and hydrophilic surfaces. A second independent monoanion is arranged outward from both sides of the monolayer and serves to link adjacent monolayers via carboxyl,water and water,carboxyl hydrogen bonds. [source] Structures of and interactions between domains of trigger factor from Thermotoga maritimaACTA CRYSTALLOGRAPHICA SECTION D, Issue 4 2007Erik Martinez-Hackert Trigger factor (TF) is a eubacterial chaperone that associates with ribosomes at the peptide-exit tunnel and also occurs in excess free in the cytosol. TF is a three-domain protein that appears to exist in a dynamic equilibrium of oligomerization states and interdomain conformations. X-ray crystallography and chemical cross-linking were used to study the roles of the N- and C-terminal domains of Thermotoga maritima TF in TF oligomerization and chaperone activity. The structural conservation of both the N- and C-terminal TF domains was unambiguously established. The biochemical and crystallographic data reveal a tendency for these domains to partake in diverse and apparently nonspecific protein,protein interactions. It is found that the T. maritima and Escherichia coli TF surfaces lack evident exposed hydrophobic patches. Taken together, these data suggest that TF chaperones could interact with nascent proteins via hydrophilic surfaces. [source] Changes in the quaternary structure of amelogenin when adsorbed onto surfacesBIOPOLYMERS, Issue 2 2009Barbara J. Tarasevich Abstract Amelogenin is a unique protein that self-assembles into spherical aggregates called "nanospheres" and is believed to be involved in controlling the formation of the highly anisotropic and ordered hydroxyapatite crystallites that form enamel. The adsorption behavior of amelogenin onto substrates is of great interest because protein-surface interactions are critical to its function. We report studies of the adsorption of amelogenin onto self-assembled monolayers containing COOH end group functionality as well as single crystal fluoroapatite, a biologically relevant surface. We found that although our solutions contained only nanospheres of narrow size distribution, smaller structures such as dimers or trimers were observed on the hydrophilic surfaces. This suggests that amelogenin can adsorb onto surfaces as small structures that "shed" or disassemble from the nanospheres that are present in solution. © 2008 Wiley Periodicals, Inc. Biopolymers 91: 103,107, 2009. This article was originally published online as an accepted preprint. The "Published Online" date corresponds to the preprint version. You can request a copy of the preprint by emailing the Biopolymers editorial office at biopolymers@wiley.com [source] Post-translational modifications of the major linear epitope 169,190aa of Ro60 kDa autoantigen alter the autoantibody bindingCLINICAL & EXPERIMENTAL IMMUNOLOGY, Issue 1 2006A. G. Terzoglou Summary Ro60 kDa is a member of the Ro/LaRNP ribonucleoprotein complex and its major linear B cell epitope, corresponding to the region 169,190aa, has been found to be the initial target of the autoimmune response in patients with systemic lupus erythematosus. This sequence contains one serine and two arginine amino acid residues, which can potentially be modified post-translationally by phosphorylation or citrullination, respectively. The aim of this study was to develop an immunoassay for anti-Ro60 kDa epitope antibody detection and to investigate the changes in the antigenicity of the Ro60 kDa epitope when it is post-translationally modified, by either citrullination or phosphorylation. Peptide analogues corresponding to the unmodified form of the epitope, its phosphorylated form, and a form with both arginine residues citrullinated were synthesized. The peptide coating conditions were investigated and it was found that the use of highly hydrophilic surfaces increase the efficiency of the coating, as well as the sensitivity of the method for anti-peptide antibody detection. All peptides were tested by the optimized enzyme-linked immunosorbent assay (ELISA) against 119 sera from patients with primary Sjögren's syndrome, systemic lupus erythematosus and rheumatoid arthritis with anti-Ro/SSA reactivity, 20 sera from patients with systemic diseases without anti-Ro/SSA immune reactivity, as well as against 65 sera from normal individuals. A large proportion of the tested sera reacted against all three peptide analogues, although with a preference for the unmodified form of the epitope. In conclusion, post-translational modifications of the major Ro60 kDa B cell epitope can alter the autoantibody binding. [source] Synthesis of poly(fluorinated styrene)- block -poly(ethylene oxide) amphiphilic copolymers via atom transfer radical polymerization: potential application as paper coating materialsPOLYMER INTERNATIONAL, Issue 8 2009Khalid A Ibrahim Abstract BACKGROUND: The surface of a substrate which comprises a fibrous material is brought into contact with a type of amphiphilic block copolymer which comprises hydrophilic/hydrophobic polymeric blocks. These amphiphilic copolymers have been synthesized by atom transfer radical polymerization (ATRP) technique. The atom transfer radical polymerization of poly(2,3,4,5,6-pentafluorostyrene)- block -poly(ethylene oxide) (PFS- b -PEO) copolymers (di- and triblock structures) with various ranges of PEO molecular weights was initiated by a PEO chloro-telechelic macroinitiator. The polymerization, carried out in bulk and catalysed by copper(I) chloride in the presence of 2,2,-bipyridine ligand, led to A,B,A amphiphilic triblock and A,B amphiphilic diblock structures. RESULTS: With most of the macroinitiators, the living nature of the polymerizations led to block copolymers with narrow molecular weight distributions (1.09 < Mw/Mn < 1.33) and well-controlled molecular structures. These block copolymers turned out to be water-soluble through adjustment of the PEO block content (>90 wt%). Of all the block copolymers synthesized, PFS- b -PEO(10k)- b -PFS containing 10 wt% PFS was found to retard water absorption considerably. CONCLUSION: The printability of paper treated with the copolymers was evaluated with contact angle measurements and felt pen tests. The adsorption of such copolymers at the solid/liquid interface is relevant to the wetting and spreading of liquids on hydrophobic/hydrophilic surfaces. Copyright © 2009 Society of Chemical Industry [source] |