Home About us Contact | |||
Hydrolytic Enzyme Activities (hydrolytic + enzyme_activity)
Selected AbstractsAbundance, diversity, and activity of microbial assemblages associated with coral reef fish guts and fecesFEMS MICROBIOLOGY ECOLOGY, Issue 1 2010Steven Smriga Abstract Feces and distal gut contents were collected from three coral reef fish species. Bacteria cell abundances, as determined via epifluorescence microscopy, ranged two orders of magnitude among the fishes. Mass-specific and apparent cell-specific hydrolytic enzyme activities in feces from Chlorurus sordidus were very high, suggesting that endogenous fish enzymes were egested into feces. Denaturing gradient gel electrophoresis profiles of 16S rRNA genes were more similar among multiple individuals of the surgeonfish Acanthurus nigricans than among individuals of the parrotfish C. sordidus or the snapper Lutjanus bohar. Analyses of feces-derived 16S rRNA gene clones revealed that at least five bacterial phyla were present in A. nigricans and that Vibrionaceae comprised 10% of the clones. Meanwhile, C. sordidus contained at least five phyla and L. bohar three, but Vibrionaceae comprised 71% and 76% of the clones, respectively. Many sequences clustered phylogenetically to cultured Vibrio spp. and Photobacterium spp. including Vibrio ponticus and Photobacterium damselae. Other Vibrionaceae -like sequences comprised a distinct phylogenetic group that may represent the presence of ,feces-specific' bacteria. The observed differences among fishes may reflect native gut microbiota and/or bacterial assemblages associated with ingested prey. [source] Comment to Sherr and Sherr (1999): "Is there any appropriate way to distinguish different ,- N -acetylhexosaminidase activities in aquatic environments?"FEMS MICROBIOLOGY ECOLOGY, Issue 1 2000Jaroslav Vrba Abstract The recent paper of Sherr and Sherr on detecting low-affinity ,-glucosaminidase activity in several marine microbes extends current knowledge about hydrolytic enzyme activities in natural aquatic systems. However, their conclusions regarding the whole-cell assay with MUF- N -acetyl-,- D -glucosaminide (MUF-[GlcNAc]) cannot be accepted. First, we explicitly demonstrate a strong correlation between extracellular activities of the high-affinity enzymes and grazing rates of bacterivorous protists. Therefore, the assay can still be recommended for the estimation of total protistan grazing on prokaryotic picoplankton. Second, the ability of many aquatic organisms to produce enzymes which cleave fluorogenic substrates, such as MUF-[GlcNAc] and/or MUF-,- D - N,N,,N,-triacetylchitotriose (MUF-[GlcNAc]3), has been well-documented during the last decade. Thus, neither of the two substrates may be considered as exclusively specific for targeting either lysozymes or ,- N -acetylhexosaminidases. [source] The response of heterotrophic activity and carbon cycling to nitrogen additions and warming in two tropical soilsGLOBAL CHANGE BIOLOGY, Issue 9 2010DANIELA F. CUSACK Abstract Nitrogen (N) deposition is projected to increase significantly in tropical regions in the coming decades, where changes in climate are also expected. Additional N and warming each have the potential to alter soil carbon (C) storage via changes in microbial activity and decomposition, but little is known about the combined effects of these global change factors in tropical ecosystems. In this study, we used controlled laboratory incubations of soils from a long-term N fertilization experiment to explore the sensitivity of soil C to increased N in two N-rich tropical forests. We found that fertilization corresponded to significant increases in bulk soil C concentrations, and decreases in C loss via heterotrophic respiration (P< 0.05). The increase in soil C was not uniform among C pools, however. The active soil C pool decomposed faster with fertilization, while slowly cycling C pools had longer turnover times. These changes in soil C cycling with N additions corresponded to the responses of two groups of microbial extracellular enzymes. Smaller active C pools corresponded to increased hydrolytic enzyme activities; longer turnover times of the slowly cycling C pool corresponded to reduced activity of oxidative enzymes, which degrade more complex C compounds, in fertilized soils. Warming increased soil respiration overall, and N fertilization significantly increased the temperature sensitivity of slowly cycling C pools in both forests. In the lower elevation forest, respired CO2 from fertilized cores had significantly higher ,14C values than control soils, indicating losses of relatively older soil C. These results indicate that soil C storage is sensitive to both N deposition and warming in N-rich tropical soils, with interacting effects of these two global change factors. N deposition has the potential to increase total soil C stocks in tropical forests, but the long-term stability of this added C will likely depend on future changes in temperature. [source] Thermotropic Lipid Phase Transition and the Behavior of Hydrolytic Enzymes in the Kidney Cortex Brush Border MembraneCHEMISTRY & BIODIVERSITY, Issue 10 2006Sankar Abstract Functional interactions of lipids and proteins were examined in brush-border membranes isolated from the kidney cortex by studying the temperature dependence of the hydrolytic enzyme activities. A close relationship was observed for the membrane proteins and the thermotropic lipid phase transitions. Three lines of evidences were provided for such dependence: a) Arrhenius relationship of the membrane-bound enzyme activities, and the effect of temperature in native and partially delipidated membranes, b) differential scanning calorimetric study of the membrane lipid phase transitions in the native and delipidated membranes, multilamellar vesicles prepared from the membrane extracted lipids, and in vesicles from dimyristoyl phosphatidylcholine, and c) the excimer (dimer)-formation studies of the membrane extrinsic fluorescent probe, pyrene, and the resultant membrane microviscosity. The brush-border membranes were partially delipidated with BuOH and 2,2,2-trifluoroethanol. The functional interactions of the delipidated membranes, which were greatly lost on lipid removal, were largely restored by the addition of exogenous lipids in the reconstitution process, which indicate the critical dependence of the membrane integral proteins on the neighboring lipid molecules in the bulk lipid phase. [source] |