Hydrological Conditions (hydrological + condition)

Distribution by Scientific Domains


Selected Abstracts


Vegetation of the river Yamuna floodplain in the Delhi stretch, with reference to hydrological characteristics

ECOHYDROLOGY, Issue 2 2009
Tanveera Tabasum
Abstract Vegetation in the Delhi stretch of the floodplain of the river Yamuna was examined in relation to hydrological characteristics. The floodplain was delineated into four zones based on hydrological interventions. Seventy-four plant species including forty-two aquatic/semi-aquatic were identified. The decrease in water discharge from Jhangola to downstream Okhla, led to reduction in species richness. Co-structures between hydrological characteristics and vegetational composition indicated that vegetation in the four identified zones was governed essentially by hydrological factors. Zones I and III exhibited near-perfect correspondence signifying that variation in vegetational composition in these zones could be explained, to a great extent, on the basis of variations in the hydrological conditions. Zone II and IV, with relatively weaker correspondence, indicated that there were gradients other than hydrological conditions, which caused variations in vegetational characteristics. The present study highlighted the importance of allocation of water for periodic inundation to maintain floodplain characteristics including aquatic/semi-aquatic vegetation cover as critical to the management of the river ecosystem. The current policy of water use focused entirely on human uses ignoring ecological requirements, and had clear adverse implications on the health of the river ecosystem. Copyright © 2009 John Wiley & Sons, Ltd. [source]


Spatial variation of metals and acid volatile sulfide in floodplain lake sediment

ENVIRONMENTAL TOXICOLOGY & CHEMISTRY, Issue 3 2003
Corine van Griethuysena
Abstract In risk assessment of aquatic sediments, much attention is paid to the immobilizing effect of acid volatile sulfide (AVS) on trace metals. The difference of AVS and simultaneously extracted metals (SEM) gives an indication of metal availability. In floodplain sediments, where changing redox conditions occur. AVS may play a major role in determining variation in metal availability. The importance of spatial heterogeneity has been recognized in risk assessment of trace-metal-polluted sediments. However, little is known about spatial variation of available metal fractions. We studied spatial variability of sediment, environmental conditions, total contaminant concentrations, and available metals (as SEM-AVS or SEM-AVS/fOC) in a floodplain lake. The top 5 cm of sediment was sampled at 43 locations. Data were analyzed with correlation and principal component analysis as well as with geostatistical methods. Trace metal and SEM concentrations and most sediment characteristics were more or less constant within 10%. In contrast, AVS concentrations were much more variable and showed a strong spatial dependence due to differences in lake depth, total sulfur pools, and redox potential (Eh), which resulted in crucial differences in trace-metal availability within the lake. The spatial pattern of SEM-AVS deviates from total or normalized trace-metal patterns. This particularly has implications for risk assessment of sediments prone to dynamic hydrological conditions, where AVS concentrations are also variable in time. [source]


Decalcification of soils subject to periodic waterlogging

EUROPEAN JOURNAL OF SOIL SCIENCE, Issue 1 2000
G. A. Van Den Berg
Summary Intense decalcification of fine-grained organic-rich soils subject to periodic oxidation and reduction takes place in the Biesbosch, a freshwater, tidally influenced wetland area in the Rhine,Meuse delta in The Netherlands. Soil chemical (sulphide concentration and pore-water characteristics) and hydrological variables (drainage) were measured in three representative Fluvisols differing in hydrology to identify processes inducing calcium carbonate dissolution. Both oxidation of previously formed iron sulphides during periods of low ground water and infrequent inundation, and increased carbon dioxide pressure in the soil during periods of waterlogging combined with drainage of pore-water solutes, contribute significantly to decalcification of the hydric soils. The effects of these individual processes on decalcification are in the same order of magnitude in the studied soils. Depending on site-specific hydrological conditions, approximately 0.1,0.3% calcium carbonate may be dissolved per year by a combination of these two processes, which is comparable to actual decalcification rates at these sites. Estimates of long-term decalcification rates, based on knowledge of the hydrogeochemistry, may be used to assess the risks accompanying the conversion of agricultural soils into wetlands. [source]


Response of bacterioplankton community structures to hydrological conditions and anthropogenic pollution in contrasting subtropical environments

FEMS MICROBIOLOGY ECOLOGY, Issue 3 2009
Rui Zhang
Abstract Bacterioplankton community structures under contrasting subtropical marine environments (Hong Kong waters) were analyzed using 16S rRNA gene denaturing gradient gel electrophoresis (DGGE) and subsequent sequencing of predominant bands for samples collected bimonthly from 2004 to 2006 at five stations. Generally, bacterial abundance was significantly higher in the summer than in the winter. The general seasonal variations of the bacterial community structure, as indicated by cluster analysis of the DGGE pattern, were best correlated with temperature at most stations, except for the station close to a sewage discharge outfall, which was best explained by pollution-indicating parameters (e.g. biochemical oxygen demand). Anthropogenic pollutions appear to have affected the presence and the intensity of DGGE bands at the stations receiving discharge of primarily treated sewage. The relative abundance of major bacterial species, calculated by the relative intensity of DGGE bands after PCR amplification, also indicated the effects of hydrological or seasonal variations and sewage discharges. For the first time, a systematic molecular fingerprinting analysis of the bacterioplankton community composition was carried out along the environmental and pollution gradient in a subtropical marine environment, and it suggests that hydrological conditions and anthropogenic pollutions altered the total bacterial community as well as the dominant bacterial groups. [source]


The significance of side-arm connectivity for carbon dynamics of the River Danube, Austria

FRESHWATER BIOLOGY, Issue 2 2008
S. PREINER
Summary 1. Side-arms connected to the main stem of the river are key areas for biogeochemical cycling in fluvial landscapes, exhibiting high rates of carbon processing. 2. This work focused on quantifying autochthonous and allochthonous carbon pools and, thereby, on comparing transport and transformation processes in a restored side-arm system of the River Danube (Regelsbrunn). We established a carbon budget and quantified carbon processing from March to September 2003. In addition, data from previous studies during 1997 to 1999 were assessed. 3. Gross primary production (GPP) and community respiration were estimated by diel oxygen time curves and an oxygen mass balance. Plankton primary production was determined to estimate its contribution to GPP under different hydrological conditions. 4. Based on the degree of connectivity, three hydrological phases were differentiated. Most of the organic matter, dominated by allochthonous carbon, was transported in the main channel and through the side-arm during floods, while at intermediate and low flows (and thus connectivity), transformation processes became more important and autochthonous carbon dominated the carbon pool. The side-arm system functioned as a sink for particulate matter [total suspended solids and particulate organic carbon (POC)] and a source of dissolved organic carbon (DOC) and chlorophyll- a. 5. Autochthonous primary production of 4.2 t C day,1 in the side-arm was equivalent to about 20% of the allochthonous inputs of 20 t C day,1 (POC and DOC) entering the area at mean flow (1% of the discharge of the main channel). Pelagic photosynthesis was generally high at mean flow (1.3,3.8 g C m,2 day,1), and contributed up to 90% of system productivity. During long stagnant periods at low discharge, the side-arm was controlled by biological processes and a shift from planktonic to benthic activity occurred (benthic primary production of 0.4,14 g C m,2 day,1). 6. The transformation of the organic matter that passes through the side-arm under different hydrological conditions, points to the importance of these subsystems in contributing autochthonous carbon to the food web of the main channel. [source]


Allochthonous and autochthonous particulate organic matter in floodplains of the River Danube: the importance of hydrological connectivity

FRESHWATER BIOLOGY, Issue 2 2003
Thomas Hein
SUMMARY 1.,The elemental composition, the proportion of living organic carbon and the carbon stable isotope signatures of particulate organic matter (POM) were determined in a large river floodplain system in order to elucidate the major carbon sources in relation to the hydrological conditions over a 13-month period. 2.,Two floodplain segments and the main channel of the River Danube downstream of Vienna (Austria), were compared on the basis of discharge and water age estimations. The more dynamic floodplain was connected to the main channel for 46% of the study period and drained up to 12% of total discharge at high water. 3.,The mean C : N ratio and ,13C signature of the POM increased from the floodplain site that was more isolated from the river (6.6; ,33,) to the main channel (8.4; ,25,). At the dynamic floodplain site, the C : N ratio and the ,13C signature of the POM increased with hydrological connectivity (expressed as water age). 4.,Only during flood events (4% frequency of occurrence), a considerable input of riverine POM was observed. This input was indicated by a C : N ratio of the POM pool of more than 10, the amount of detrital carbon (>80% of the total POM pool) and a ,13C signature of POM of more than ,25, in the dynamic floodplain. 5.,Plankton derived carbon, indicated by C : N ratios less than eight and ,13C values lower than ,25,, dominated the particulate organic carbon (POC) pool at both floodplain sites, emphasising the importance of local (autochthonous) production. Phytoplankton was the major plankton compartment at the dynamic site, with highest biomasses at medium water ages. 6.,At the dynamic floodplain site, the Danube Restoration Project has enhanced the duration of upstream surface connection with the main channel from 4 to 46% frequency of occurrence. Therefore, the export of living POC to the main channel is now established during phases of maximum phytoplankton production and doubled the estimated total export of non-refractory POM compared with prerestoration conditions. [source]


Atmospheric impact of bioenergy based on perennial crop (reed canary grass, Phalaris arundinaceae, L.) cultivation on a drained boreal organic soil

GCB BIOENERGY, Issue 3 2010
NARASINHA J. SHURPALI
Abstract Marginal organic soils, abundant in the boreal region, are being increasingly used for bioenergy crop cultivation. Using long-term field experimental data on greenhouse gas (GHG) balance from a perennial bioenergy crop [reed canary grass (RCG), Phalaris arundinaceae L.] cultivated on a drained organic soil as an example, we show here for the first time that, with a proper cultivation and land-use practice, environmentally sound bioenergy production is possible on these problematic soil types. We performed a life cycle assessment (LCA) for RCG on this organic soil. We found that, on an average, this system produces 40% less CO2 -equivalents per MWh of energy in comparison with a conventional energy source such as coal. Climatic conditions regulating the RCG carbon exchange processes have a high impact on the benefits from this bioenergy production system. Under appropriate hydrological conditions, this system can even be carbon-negative. An LCA sensitivity analysis revealed that net ecosystem CO2 exchange and crop yield are the major LCA components, while non-CO2 GHG emissions and costs associated with crop production are the minor ones. Net bioenergy GHG emissions resulting from restricted net CO2 uptake and low crop yields, due to climatic and moisture stress during dry years, were comparable with coal emissions. However, net bioenergy emissions during wet years with high net uptake and crop yield were only a third of the coal emissions. As long-term experimental data on GHG balance of bioenergy production are scarce, scientific data stemming from field experiments are needed in shaping renewable energy source policies. [source]


Effects of short- and long-term water-level drawdown on the populations and activity of aerobic decomposers in a boreal peatland

GLOBAL CHANGE BIOLOGY, Issue 2 2007
KRISTA JAATINEN
Abstract We analysed the response of microbial communities, characterized by phospholipid fatty acids (PLFAs), to changing hydrological conditions at sites with different nutrient levels in a southern boreal peatland. Although PLFAs of Gram-negative bacteria were characteristic of the peatland complex, microbial communities differed among sites (ombrotrophic bog, oligotrophic fen, mesotrophic fen) and sampling depths (0,5, 5,10, 10,20, 20,30 cm). The microbial communities in each site changed significantly following water-level drawdown. The patterns of change varied among sites and sampling depths. The relative proportion of Gram-negative bacteria decreased in the upper 10 cm but increased in deeper layers of the fen sites. Fungi benefited from water-level drawdown in the upper 5 cm of the mesotrophic fen, but suffered in the drier surfaces of the ombrotrophic bog, especially in the 5,10 cm layer. In contrast, actinobacteria suffered from water-level drawdown in the mesotrophic fen, but benefited in the drier surfaces of the ombrotrophic bog. Basal respiration rate correlated positively with pH and fungal PLFA, and negatively with depth. We suggest that the changes in microbial community structure after persistent water-level drawdown follow not only the hydrological conditions but also the patterns of vegetation change. Our results imply that changes in structure and activity of the microbial community in response to climate change will be strongly dependent on the type of peatland. [source]


Subsurface Transfer of Chloride After a Lake Retreat in the Central Andes

GROUND WATER, Issue 5 2001
Anne Coudrain
The area under study covers 3500 km2 in the upstream part of the closed catchment basin of the salt crust of Uyuni. This crust is a remnant of the saline Lake Tauca, which covered the area about 15,000 years ago. In the downstream part of the aquifer, the Cl concentration of ground water and Cl content in the unsaturated zone exceed 20 meq/L and 18 kg/m2, respectively. With the present hydrological conditions under semiarid conditions, the ground water residence time in the study area exceeds 3000 years. Transient simulations over 11,000 years were made using initial conditions as the retreat of Lake Tauca and taking into account a low recharge during the arid mid-Holocene period. The modeling simulates ground water flow, Cl transport, and ground water residence time. It includes the evaporation from the aquifer that leads to the accumulation of chloride in the unsaturated zone. Results of the modeling are consistent with the observations if it is assumed that the Cl previously accumulated in the unsaturated zone was flushed back into the aquifer around 2000 years B.P., contemporaneously with the end of the arid period. [source]


Detection of trends in hydrological extremes for Canadian watersheds

HYDROLOGICAL PROCESSES, Issue 13 2010
Donald H. Burn
Abstract The potential impacts of climate change can alter the risk to critical infrastructure resulting from changes to the frequency and magnitude of extreme events. As well, the natural environment is affected by the hydrologic regime, and changes in high flows or low flows can have negative impacts on ecosystems. This article examines the detection of trends in extreme hydrological events, both high and low flow events, for streamflow gauging stations in Canada. The trend analysis involves the application of the Mann,Kendall non-parametric test. A bootstrap resampling process has been used to determine the field significance of the trend results. A total of 68 gauging stations having a nominal record length of at least 50 years are analysed for two analysis periods of 50 and 40 years. The database of Canadian rivers investigated represents a diversity of hydrological conditions encompassing different extreme flow generating processes and reflects a national scale analysis of trends. The results reveal more trends than would be expected to occur by chance for most of the measures of extreme flow characteristics. Annual and spring maximum flows show decreasing trends in flow magnitude and decreasing trends in event timing (earlier events). Low flow magnitudes exhibit both decreasing and increasing trends. Copyright © 2010 John Wiley & Sons, Ltd. [source]


Is representative elementary area defined by a simple mixing of variable small streams in headwater catchments?

HYDROLOGICAL PROCESSES, Issue 5 2010
Yuko Asano
Abstract The spatial variability of hydrology may decrease with an increase in catchment area as a result of mixing of numerous small-scale hydrological conditions. At some point, it is possible that a threshold area, the representative elementary area (REA), can be identified beyond which an average hydrologic response occurs. This hypothesis has been tested mainly via numerical simulations, with only a few field studies involving simple mixing. We tested this premise quantitatively using dissolved silica (SiO2) concentrations at 96 locations that included zero-order hollow discharges through sixth-order streams, collected under low-flow conditions within the 4·27-km2 Fudoji catchment. The catchment possesses a simple topography consisting almost solely of hillslopes and stream channels, uniform bedrock geology, soil type and land use in the Tanakami Mountains in central Japan. Dissolved SiO2 provides a useful tracer in hydrological studies insofar as it is responsive to flowpath depth on hillslopes of uniform geology. Our results demonstrate that even in a catchment with an almost homogeneous geology and simple topography, dissolved SiO2 concentrations in zero-order hollow discharges largely varied in space and they became similar among sampling locations with area of more than 10,1,100 km2. Relationships between stream order and standard deviation of SiO2 concentration closely matched the theoretical predictions from simple mixing of random fields. That is, our field data supported the existence of the REA and showed that the REA was produced by the simple mixing of numerous small-scale hydrological conditions. The study emphasizes the need to consider both the heterogeneous nature of small-scale hydrology and the landscape structure when assessing the characteristics of catchment runoff. Copyright © 2010 John Wiley & Sons, Ltd. [source]


Effect of growing watershed imperviousness on hydrograph parameters and peak discharge

HYDROLOGICAL PROCESSES, Issue 13 2008
Huang-jia Huang
Abstract An increasing impervious area is quickly extending over the Wu-Tu watershed due to the endless demands of the people. Generally, impervious paving is a major result of urbanization and more recently has had the potential to produce more enormous flood disasters than those of the past. In this study, 40 available rainfall,runoff events were chosen to calibrate the applicable parameters of the models and to determine the relationships between the impervious surfaces and the calibrated parameters. Model inputs came from the outcomes of the block kriging method and the non-linear programming method. In the optimal process, the shuffled complex evolution method and three criteria were applied to compare the observed and simulated hydrographs. The tendencies of the variations of the parameters with their corresponding imperviousness were established through regression analysis. Ten cases were used to examine the established equations of the parameters and impervious covers. Finally, the design flood routines of various return periods were furnished through use of approaches containing a design storm, block kriging, the SCS model, and a rainfall-runoff model with established functional relationships. These simulated flood hydrographs were used to compare and understand the past, present, and future hydrological conditions of the watershed studied. In the research results, the time to peak of flood hydrographs for various storms was diminished approximately from 11 h to 6 h in different decrements, whereas peak flow increased respectively from 127 m3 s,1 to 629 m3 s,1 for different storm intensities. In addition, this study provides a design diagram for the peak flow ratio to help engineers and designers to construct hydraulic structures efficiently and prevent possible damage to human life and property. Copyright © 2007 John Wiley & Sons, Ltd. [source]


The possible hydrologic effects of the proposed lignite open-cast mining in Drama lignite field, Greece

HYDROLOGICAL PROCESSES, Issue 11 2008
Sotiris Panilas
Abstract The present study investigates the possible hydrologic effects of the proposed lignite open-cast mining in Drama lignite field (north Greece). Recent years have seen a rapid increase in surface mining. This activity has generated a growing concern for the potential environmental impacts associated with large scale surface mining. In order to achieve a safe mine operation and allow extraction of lignite to considerable depths, extensive dewatering by pumping will be necessary, while at the same time it is desirable to avoid presence of overpumping conditions in the broader area. Based on stratigrafic, hydrologic and hydrogeologic data, a three-dimensional finite difference model was developed in order to simulate the dewatering process of the western part of the lignite open-cast mine in Drama and to predict both spatially and temporally the decline of ground water level down to the lignite surface. The dewatering of the part of the aquifer which underlies the mine area will influence the hydrological conditions of the broader region. The most important anticipated effects will be the abandonment of shallow wells as well as the decrease of ground water pumping rates of deep wells. Aquifer discharge towards the ditches of the study area will cease and there will be an inversion of ground water flow from the ditches towards the underlying aquifer. Dewatering activities will probably result in minor subsidence of the nearby peat deposits of Drama Philippi marshes. Moreover, sand pumping as well as the presence of gasses is likely to cause local subsidence phenomena, mainly in the pit slopes. Copyright © 2007 John Wiley & Sons, Ltd. [source]


Hydrological influences on hyporheic water quality: implications for salmon egg survival

HYDROLOGICAL PROCESSES, Issue 9 2004
I. A. Malcolm
Abstract The spatial and temporal variability of groundwater,surface-water (GW,SW) interactions was investigated in an intensively utilized salmon spawning riffle. Hydrochemical tracers, were used along with high-resolution hydraulic head and temperature data to assess hyporheic dynamics. Surface and subsurface hydrochemistry were monitored at three locations where salmon spawning had been observed in previous years. Temperature and hydraulic head were monitored in three nests of three piezometers located to characterize the head, the run and the tail-out of the riffle feature. Hydrochemical gradients between surface and subsurface water indicated increasing GW influence with depth into the hyporheic zone. Surface water was characterized by high dissolved oxygen (DO) concentrations, low alkalinity and conductivity. Hyporheic water was generally characterized by high levels of alkalinity and conductivity indicative of longer residence times, and low DO, indicative of reducing conditions. Hydrochemical and temperature gradients varied spatially over the riffle in response to changes in local GW,SW interactions at the depths investigated. Groundwater inputs dominated the head and tail of the riffle. The influence of SW increased in the area of accelerating flow and decreasing water depth through the run of the riffle. Temporal GW,SW interactions also varied in response to changing hydrological conditions. Gross changes in hyporheic hydrochemistry were observed at the weekly scale in response to changing flow conditions and surface water inputs to the hyporheic zone. During low flows, caused by freezing or dry weather, hyporheic hydrochemistry was dominated by GW inputs. During higher flows hyporheic hydrochemistry indicated that SW contributions increased. In addition, high-resolution hydraulic head data indicated that rapid changes in GW,SW interactions occurred during hydrological events. The spatial, and possibly the temporal, variability of GW,SW interactions had a marked effect on the survival of salmon ova. It is concluded that hyporheic dynamics and their effect on stream ecology should be given increased consideration by fisheries and water resource managers. Copyright © 2004 John Wiley & Sons, Ltd. [source]


Suspended sediment dynamics in a steep, glacier-fed mountain stream, Place Creek, Canada

HYDROLOGICAL PROCESSES, Issue 9 2003
G. Richards
Abstract This study examined suspended sediment concentration (SSC) during the ablation seasons of 2000 and 2001 in Place Creek, Canada, a steep, glacier-fed mountain stream. Comparison of stream flow in Place Creek with that in an adjacent, almost unglacierized catchment provided a rational basis for separating the ablation seasons into nival, nival,glacial, glacial and autumn recession subseasons. Distinct groupings of points in plots of electrical conductivity against discharge supported the validity of the subseasonal divisions in terms of varying hydrological conditions. Relationships between SSC and discharge (Q) varied between the two study seasons, and between subseasons. Hysteresis in the SSC,Q relationship was evident at both event and weekly time-scales. Some suspended sediment released from pro-glacial Place Lake (the source of Place Creek) appeared to be lost to channel storage at low flows, especially early in the ablation season, with re-entrainment at higher flows. Multiple regression models were derived for the subseasons using predictor variables including Q, Q2, the change in Q over the previous 3 h, cumulative discharge over the ablation season, total precipitation over the previous 24 h and SSC measured at 1500 hours as an index value for each day. The models produced adjusted R2 values ranging from 0·71 to 0·91, and provided tentative insights into the differences in SSC dynamics amongst subseasons. Introduction of the index value of SSC significantly improved the model fit during the nival,glacial and glacial subseasons for both years, as it adjusts the model to the current condition of sediment supply. Copyright © 2003 John Wiley & Sons, Ltd. [source]


Long-term variability in precipitation and streamflow in Iceland and relations to atmospheric circulation

INTERNATIONAL JOURNAL OF CLIMATOLOGY, Issue 10 2009
Jóna Finndís Jónsdóttir
Abstract How the variability of the atmospheric circulation affects precipitation in Iceland is not completely understood. Also, the sea surface temperature (SST) has a strong influence on the temperature over the country, and thereby, snow and glacial melt. This study, therefore, aims at explaining how atmospheric circulation and sea surface temperature influence seasonal and annual precipitation, and, consequently, runoff in Iceland. Empirical orthogonal function (EOF) analysis is performed on annual and seasonal time series of precipitation and discharge to identify their key modes of variability during the period 1966,2004. The correlation between the time series of each EOF mode with individual time series of sea level pressure (SLP), air temperature and SST was then evaluated. The analyses evidenced how large-scale climate variables are connected to the regional precipitation and runoff in Iceland. They showed that the strength of the polar vortex may be, at least, as important for the precipitation in some areas of Iceland as the strength of the Icelandic Low (IL). Moreover, the location of the semi-permanent IL often defines the predominant wind direction over the country and, as such, the regions of preferred precipitation. Since the watersheds act as large precipitation gauges with response patterns depending on the geology and glaciers, the variability of the annual discharge closely resembles the variability of precipitation, except for the glacial rivers. Glacial melt is highly correlated to air temperature and SST, and the spring discharge is affected by winter and spring temperatures. The results also revealed that Icelandic hydrological conditions in the spring can be forecasted by precipitation and temperature of the autumn and winter seasons, as well as by the general prevalent circulation patterns. Additionally, a potential for seasonal forecast of precipitation, and river discharge in other seasons was identified, particularly if seasonal forecast of SLP is available. Copyright © 2008 Royal Meteorological Society [source]


Post-Impoundment Biomass and Composition of Phytoplankton in the Yangtze River

INTERNATIONAL REVIEW OF HYDROBIOLOGY, Issue 3 2007
Hui Zeng
Abstract Damming, and thus alteration of stream flow, promotes higher phytoplankton populations and encourages algal blooms (density >106 cells L,1) in the Three Gorges Reservoir (TGR). Phytoplankton composition and biomass were studied in the Yangtze River from March 2004 to May 2005. 107 taxa were identified. Diatoms were the dominant group, followed by Chlorophyta and Cyanobacteria. In the Yangtze River, algal abundance varied from 3.13 × 103 to 3.83 × 106 cells L,1, and algal biomass was in the range of 0.06 to 659 mg C m,3. Levels of nitrogen, phosphorus and silica did not show consistent longitudinal changes along the river and were not correlated with phytoplankton parameters. Phytoplankton abundance was negatively correlated with main channel discharge (Spearman r = ,1.000, P < 0.01). Phytoplankton abundance and biomass in the Yangtze River are mainly determined by the hydrological conditions rather than by nutrient concentrations. (© 2007 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim) [source]


A model for optimisation of water management in rice polders in Thailand,

IRRIGATION AND DRAINAGE, Issue 5 2005
Preecha Wandee
modèle mathématique; polders de riz; polder système de gestion de l'eau; optimisation Abstract This paper presents a mathematical model for the determination of optimal values for the main components of water management systems in rice polders in Thailand. The aim of the water management system in a rice area is to create good growing conditions for the crops. Under the hydrological conditions of Thailand the average rainfall during the rainy season is more than enough for growing rice or other crops. However, during the dry season there is a very small amount of rainfall. Thus the farmers are confronted with two quite different conditions and water management has to deal with irrigation and drainage issues. The main components of the water management system in a rice polder are the water level in the canals, the percentage of open surface water, discharge capacity from the field and discharge capacity of the pumping station or sluice. A model has been developed that takes into account damage due to flooding and drought as well as construction and maintenance cost for irrigation and drainage systems based on the hydrological conditions. Optimising of such a water management system means determining the main components in such a way that the equivalent annual costs are minimal. A case study has been done for a rice polder in Suphanburi province. It was found that the polder water level for rice under rainfed conditions could be kept above ground level to minimise loss of water from the rice field, whereas under irrigated conditions the polder water level has to be kept below ground level to get good drainage conditions. Copyright © 2005 John Wiley & Sons, Ltd. Cet article présente un modèle mathématique pour l'optimisation des composants principaux du système de gestion de l'eau dans des polders de riz en Thaïlande. Le but du système de gestion de l'eau dans un secteur de riz est de créer de bonnes conditions de croissance pour les récoltes. Dans la situation hydrologique de la Thaïlande les précipitations moyennes pendant la saison des pluies sont plus que suffisantes pour cultiver du riz croissant ou d'autres récoltes. Cependant, durant la saison sèche il y a très peu de précipitations. Ainsi les fermiers sont confrontés à deux conditions tout à fait différentes. Par conséquent la gestion de l'eau doit prendre en compte des problèmes d'irrigation et de drainage. Les composants principaux du système de gestion de l'eau dans un polder de riz sont le niveau d'eau dans les canaux, le pourcentage de l'eau ouverte, la capacité de décharge du champ et capacité de décharge de la station de pompage ou d'écluse. On a développé un modèle qui tient compte des dommages dus à l'inondation et à la sécheresse aussi bien que du coût de construction et d'entretien pour l'irrigation et à la canalisation basée sur les conditions hydrologiques. La linéarisation d'un tel système de gestion de l'eau implique de déterminer les composants principaux de telle manière que le système entier ait le coût équivalent annuel minimum. Une étude de cas a été faite pour un polder de riz dans la province de Suphanburi. On a constaté que le niveau d'eau du polder pour le riz irrigué à l'eau de pluie pouvait être gardé au-dessus du niveau du sol pour réduire au minimum la perte d' eau de la rizière, tandis que dans des conditions irriguées le niveau d'eau de polder doit être gardé au-dessous du niveau du sol pour obtenir de bonnes conditions de drainage. Copyright © 2005 John Wiley & Sons, Ltd. [source]


Modeling the operation of multireservoir systems using decomposition and stochastic dynamic programming

NAVAL RESEARCH LOGISTICS: AN INTERNATIONAL JOURNAL, Issue 3 2006
T.W. Archibald
Abstract Stochastic dynamic programming models are attractive for multireservoir control problems because they allow non-linear features to be incorporated and changes in hydrological conditions to be modeled as Markov processes. However, with the exception of the simplest cases, these models are computationally intractable because of the high dimension of the state and action spaces involved. This paper proposes a new method of determining an operating policy for a multireservoir control problem that uses stochastic dynamic programming, but is practical for systems with many reservoirs. Decomposition is first used to reduce the problem to a number of independent subproblems. Each subproblem is formulated as a low-dimensional stochastic dynamic program and solved to determine the operating policy for one of the reservoirs in the system. © 2006 Wiley Periodicals, Inc. Naval Research Logistics, 2006 [source]


Benchmarking habitat quality: observations using River Habitat Survey on near-natural streams and rivers in northern and western Europe

AQUATIC CONSERVATION: MARINE AND FRESHWATER ECOSYSTEMS, Issue S1 2010
Paul J. Raven
Abstract 1.Some ecological effects of physically modifying rivers are still unclear, partly due to scale factors, but also because the character of high quality habitat is poorly understood. 2.Surveys at 278 sites on 141 near-natural streams and rivers in northern and western Europe were carried out between 1994 and 2009 to benchmark the habitat quality assessment system used for River Habitat Survey (RHS). 3.The objectives were to establish if RHS was suitable outside the UK, investigate if 500 m was still valid as the survey length, suggest a benchmarking strategy and recommend improvements to habitat quality assessment protocols. 4.Some modifications to RHS are needed to take account of differences in hydrological conditions, land-use and, most importantly, riparian habitat structure found in mainland Europe. 5.On average, 82,87% of channel attributes and 87,98% of channel and bank features were recorded within the first of consecutive RHS sites, confirming that 500 m is an effective sample length for characterizing small rivers. 6.Stream-flow character appeared to influence the distribution of several in-channel features, with greater diversity and between-site variation associated with rivers of mixed flow-types. To account for local variation and for effective use of survey time, it is recommended that two or more consecutive RHS sites are used for benchmarking purposes. 7.A suite of assessment protocols with agreed criteria and analytical rules, linked to specific objectives (e.g. nature conservation, geomorphic condition), is needed to establish the character and habitat quality of rivers in a consistent fashion. 8.A multi-discipline benchmarking programme using hydro-ecological regions in Europe would build on existing knowledge and help to improve both the inter-calibration and local application of quality assessment protocols. Data-sharing by hydrologists, river ecologists and fluvial geomorphologists would improve the basis for managing rivers in support of the European Water Framework Directive and Habitats Directive. Copyright © 2010 John Wiley & Sons, Ltd. [source]


Environmental changes in man-made coastal dune pools since 1850 as indicated by sedimentary and epiphytic diatom assemblages (Belgium)

AQUATIC CONSERVATION: MARINE AND FRESHWATER ECOSYSTEMS, Issue 3 2003
Luc Denys
Abstract 1.Diatom assemblages of man-made coastal dune wetlands between Blankenberge and Heist (Belgium), dating from 1852 to 1929 and sampled from herbarium specimens of macrophytes, were compared with more recent samples collected in the remaining calcareous dune marshes and pools in this area. 2.Overall, nutrient conditions inferred from the reference assemblages were fairly eutrophic for phosphorus. Only a minority of the historical assemblages pointed to presumably nitrogen-limited conditions. 3.Significant alterations in general assemblage composition were observed, including a marked decline of epiphytic species, and a decrease in the compositional variation in sediment diatom assemblages. These changes can be attributed mainly to an increased availability of nutrients and degradable organic matter since the mid 1970s. No changes in the salinity range seem to have occurred, suggesting fairly stable hydrological conditions. 4.Possible causes for eutrophication include increased atmospheric deposition of nutrients, but also more site-related phenomena such as guanotrophication, angling and, perhaps, effects of nature management on soil,nutrient cycling. Their relative importance needs to be established and further monitoring is necessary. 5.Measures are required to reduce nutrient levels of both permanently and periodically inundated sites and to promote small-scale habitat differentiation. Due to physical constraints, the latter will be possible only by mimicking the processes that act upon more natural dune systems in management practice. Copyright © 2003 John Wiley & Sons, Ltd. [source]


Characteristics of Underground Water Flow at Different Water Levels in Tianshengan Karst Area, Yunnan, China

ACTA GEOLOGICA SINICA (ENGLISH EDITION), Issue 1 2010
Janja KOGOV
Abstract: Three tracing tests from the same injection point executed at low, medium, and high water levels in the karst aquifer near Tianshengan village, Lunan Stone Forest, Yunnan Province, China, have revealed the basic properties of underground water flow. They showed the general directions of water flows; tracer concentrations were observed at six successive points allowing for the calculation of apparent dominant flow velocities at these sections towards the Dalongtan karst spring. For the high water level, the discharge between single sections was between two and 10 times greater than that at low water level. For the medium water level, the flow velocity at different sections was between 1.4 and 3.7 times faster than that at low water level; and for high water level, it was between 1.3 and 2.7 times faster than that at medium water level. The fastest water flow appeared at the first section (23 cm/s at medium water level); and the slowest (0.6 cm/s at low water level) appeared where water flow must cross the Tianshengan fault (north-south direction), and later, a layer of 20-30 m thickness of quartz sandstone and shale clay-stones. It was also possible to calculate the recovery of the tracer for point 4, Dakenyan, where discharge was measured. At the medium water level, 50% of the injected tracer was detected a half-day after its first appearance and at low water level after more than 3 days. The previously published research illustrates the transport velocities of possible contaminants and their solubilities in water at different hydrological conditions. [source]