Home About us Contact | |||
Hydrologic Processes (hydrologic + process)
Selected AbstractsChanges in fish assemblages in catchments in north-eastern Spain: biodiversity, conservation status and introduced speciesFRESHWATER BIOLOGY, Issue 8 2010ALBERTO MACEDA-VEIGA Summary 1. North-eastern Spain is a hot spot for the introduction of alien fish species, and its native fish fauna is one of the most endangered worldwide. We used an extensive data set from 2002 to 2003 and historical information from the area to characterize fish diversity and establish conservation priorities in river catchments. 2. Diversity indices were used to characterize fish diversity at the basin scale. An index of conservation status was applied for each species, which considers the occurrence, abundance and endemicity of each taxon. We used indirect ordination methods to test the relationship among basin features and to identify those variables most correlated with each other. To identify physical, biotic and environmental characteristics that seem to make a basin particularly susceptible to invasion, we performed a step-wise multiple regression to examine the relationship between the number of native, translocated and introduced fish species (including the original native species richness of each basin), and landscape variables. 3. Over a period of approximately 50 years, the mean range size of native fish species has decreased by 60%. The greatest decline occurred in Gasterosteus gymnurus, Anguilla anguilla and Salaria fluviatilis, for which species over 75% of the original distribution area has been lost. The species with the highest conservation index were Gasterosteus gymnurus and Salaria fluviatilis. 4. Basin area and the catchment type explained 70% of variation in native species richness, whereas the number of dams and basin area accounted for more than 80% of variation in the number of introduced species. 5. The original native species richness and the number of introduced species at basin scale were not related, and thus there was no evidence of "biotic resistance" to invasion. The restoration of natural hydrologic processes and the development of specific management tools to protect native species, such as the prioritization of areas for fish conservation and the eradication of local populations of exotic species, are required to restore native fish fauna in these catchments. [source] Development of a SWAT extension module to simulate riparian wetland hydrologic processes at a watershed scaleHYDROLOGICAL PROCESSES, Issue 16 2008Yongbo Liu Abstract Using a mass balance algorithm, this study develops an extension module that can be embedded in the commonly used Soil and Water Assessment Tool (SWAT). This module makes it possible to assess effects of riparian wetlands on runoff and sediment yields at a watershed scale, which is very important for aquatic ecosystem management but rarely documented in the literature. In addition to delineating boundaries of a watershed and its subwatersheds, the module groups riparian wetlands within a subwatershed into an equivalent wetland for modelling purposes. Further, the module has functions to compute upland drainage area and other parameters (e.g. maximum volume) for the equivalent wetland based on digital elevation model, stream network, land use, soil and wetland distribution GIS datasets. SWAT is used to estimate and route runoff and sediment generated from upland drainage area. The lateral exchange processes between riparian wetlands and their hydraulically connected streams are simulated by the extension module. The developed module is empirically applied to the 53 km2 Upper Canagagigue Creek watershed located in Southern Ontario of Canada. The simulation results indicate that the module can make SWAT more reasonably predict flow and sediment loads at the outlet of the watershed and better represent the hydrologic processes within it. The simulation is sensitive to errors of wetland parameters and channel geometry. The approach of embedding the module into SWAT enables simulation of hydrologic processes in riparian wetlands, evaluation of wetland effects on regulating stream flow and sediment loading and assessment of various wetland restoration scenarios. Copyright © 2008 John Wiley & Sons, Ltd. [source] The impact of parameter lumping and geometric simplification in modelling runoff and erosion in the shrublands of southeast ArizonaHYDROLOGICAL PROCESSES, Issue 1 2006H. Evan Canfield Abstract There have been many studies of hydrologic processes and scale. However, some researchers have found that predictions from hydrologic models may not be improved by attempting to incorporate the understanding of these processes into hydrologic models. This paper quantifies the effect of simplifying watershed geometry and averaging the parameter values on simulations generated using the KINEROS2 model. Furthermore, it examines how these changes in model input effect model output. The model was applied on a small semiarid rangeland watershed in which runoff is generated by the infiltration excess mechanism. The study concludes that averaging input parameter values has little effect on runoff volume and peak in simulating runoff. However, geometric simplification does have an effect on runoff peak and volume, but it is not statistically significant. In contrast, both averaging input parameter values and geometric simplification have an effect on model-predicted sediment yield. Copyright © 2005 John Wiley & Sons, Ltd. [source] STREAMFLOW DEPLETION: MODELING OF REDUCED BASEFLOW ANI INDUCED STREAM INFILTRATION FROM SEASONALLY PUMPED WELLS,JOURNAL OF THE AMERICAN WATER RESOURCES ASSOCIATION, Issue 1 2001Xunhong Chen ABSTRACT: Numerical modeling techniques are used to analyze streamflow depletion for stream-aquifer systems with baseflow. The analyses calculated two flow components generated by a pumping well located at a given distance from a river that is hydraulically connected to an unconfined aquifer. The two components are induced stream infiltration and reduced baseflow; both contribute to total streamflow depletion. Simulation results suggest that the induced infiltration, the volume of water discharged from the stream to the aquifer, has a shorter term impact on streamflow, while the reduced baseflow curves show a longer term effect. The peak impacts of the two hydrologic processes on streamflow occur separately. The separate analysis helps in understanding the hydrologic interactions between stream and aquifer. Practically, it provides useful information about contaminant transport from stream to aquifer when water quality is a concern, and for areas where water quantity is an issue, the separate analysis offers additional information to the development of water resource management plan. [source] |