Home About us Contact | |||
Hydrologic Conditions (hydrologic + condition)
Selected AbstractsVariability of dry sediment bulk density between and within retention ponds and its impact on the calculation of sediment yieldsEARTH SURFACE PROCESSES AND LANDFORMS, Issue 4 2001Gert Verstraeten Abstract Monitoring sediment yields from catchments is important for assessing overall denudation rates and the impact of environmental change. One of the methods used to assess sediment yield is by quantifying sedimentation rates in reservoirs, lakes or small ponds. Before reliable sediment yield values (t ha,1 a,1) can be computed from such sedimentation records, the measured sediment volumes need to be converted to sediment masses using representative values of the dry sediment bulk density. In textbooks, simple relations predicting dry sediment bulk density from sediment texture, time since deposition and hydrologic condition are presented. In this study, 13 small flood retention ponds in central Belgium were sampled to reveal the variability in dry sediment bulk density and to test the commonly used relations to predict dry sediment bulk density. Dry sediment bulk density varies not only between the selected ponds (0·78,1·35 t,m,3) but also within individual ponds (coefficient of variation at 95 per cent ranges from 7 to 80 per cent). The observed variability can be attributed primarily to the hydrologic condition of the retention pond and, also, to sediment texture. The existing relations are not a reliable predictor for the observed dry bulk densities, because they are primarily based on sediment texture. Thus, when using volumetric sedimentation data from small ponds with varying hydrologic condition to predict sediment yield, existing relations predicting dry sediment bulk density cannot be applied. Instead, frequent and dense sampling of sediments is necessary to calculate a representative value of the dry sediment bulk density. Copyright © 2001 John Wiley & Sons, Ltd. [source] Processes and forms of an unstable alluvial system with resistant, cohesive streambeds ,EARTH SURFACE PROCESSES AND LANDFORMS, Issue 7 2002Andrew Simon Abstract As a response to channelization projects undertaken near the turn of the 20th century and in the late 1960s, upstream reaches and tributaries of the Yalobusha River, Mississippi, USA, have been rejuvenated by upstream-migrating knickpoints. Sediment and woody vegetation delivered to the channels by mass failure of streambanks has been transported downstream to form a large sediment/debris plug where the downstream end of the channelized reach joins an unmodified sinuous reach. Classification within a model of channel evolution and analysis of thalweg elevations and channel slopes indicates that downstream reaches have equilibrated but that upstream reaches are actively degrading. The beds of degrading reaches are characterized by firm, cohesive clays of two formations of Palaeocene age. The erodibility of these clay beds was determined with a jet-test device and related to critical shear stresses and erosion rates. Repeated surveys indicated that knickpoint migration rates in these clays varied from 0·7 to 12 m a,1, and that these rates and migration processes are highly dependent upon the bed substrate. Resistant clay beds of the Porters Creek Clay formation have restricted advancement of knickpoints in certain reaches and have caused a shift in channel adjustment processes towards bank failures and channel widening. Channel bank material accounts for at least 85 per cent of the material derived from the channel boundaries of the Yalobusha River system. Strategies to reduce downstream flooding problems while preventing upstream erosion and land loss are being contemplated by action agencies. One such proposal involves removal of the sediment/debris plug. Bank stability analyses that account for pore-water and confining pressures have been conducted for a range of hydrologic conditions to aid in predicting future channel response. If the sediment/debris plug is removed to improve downstream drainage, care should be taken to provide sufficient time for drainage of groundwater from the channel banks so as not to induce accelerated bank failures. Published in 2002 John Wiley & Sons, Ltd. [source] Influence of in-stream diel concentration cycles of dissolved trace metals on acute toxicity to one-year-old cutthroat trout (Oncorhynchus clarki lewisi)ENVIRONMENTAL TOXICOLOGY & CHEMISTRY, Issue 12 2007David A. Nimick Abstract Extrapolating results of laboratory bioassays to streams is difficult, because conditions such as temperature and dissolved metal concentrations can change substantially on diel time scales. Field bioassays conducted for 96 h in two mining-affected streams compared the survival of hatchery-raised, metal-näive westslope cutthroat trout (Oncorhynchus clarki lewisi) exposed to dissolved (0.1-,m filtration) metal concentrations that either exhibited the diel variation observed in streams or were controlled at a constant value. Cadmium and Zn concentrations in these streams increased each night by as much as 61 and 125%, respectively, and decreased a corresponding amount the next day, whereas Cu did not display a diel concentration cycle. In High Ore Creek (40 km south of Helena, MT, USA), survival (33%) after exposure to natural diel-fluctuating Zn concentrations (range, 214,634 ,g/L; mean, 428 ,g/L) was significantly (p = 0.008) higher than survival (14%) after exposure to a controlled, constant Zn concentration (422 ,g/L). Similarly, in Dry Fork Belt Creek (70 km southeast of Great Falls, MT, USA), survival (75%) after exposure to diel-fluctuating Zn concentrations (range, 266,522 ,g/L; mean, 399 ,g/L) was significantly (p = 0.022) higher than survival (50%) in the constant-concentration treatment (392 ,g/L). Survival likely was greater in these diel treatments, both because the periods of lower metal concentrations provided some relief for the fish and because toxicity during periods of higher metal concentrations was lessened by the simultaneous occurrence each night of lower water temperatures, which reduce the rate of metal uptake. Based on the present study, current water-quality criteria appear to be protective for streams with diel concentration cycles of Zn (and, perhaps, Cd) for the hydrologic conditions tested. [source] Human modification of the landscape and surface climate in the next fifty yearsGLOBAL CHANGE BIOLOGY, Issue 5 2002R. S. Defries Abstract Human modification of the landscape potentially affects exchanges of energy and water between the terrestrial biosphere and the atmosphere. This study develops a possible scenario for land cover in the year 2050 based on results from the IMAGE 2 (Integrated Model to Assess the Greenhouse Effect) model, which projects land-cover changes in response to demographic and economic activity. We use the land-cover scenario as a surface boundary condition in a biophysically-based land-surface model coupled to a general circulation model for a 15-years simulation with prescribed sea surface temperature and compare with a control run using current land cover. To assess the sensitivity of climate to anthropogenic land-cover change relative to the sensitivity to decadal-scale interannual variations in vegetation density, we also carry out two additional simulations using observed normalized difference vegetation index (NDVI) from relatively low (1982,83) and high (1989,90) years to describe the seasonal phenology of the vegetation. In the past several centuries, large-scale land-cover change occurred primarily in temperate latitudes through conversion of forests and grassland to highly productive cropland and pasture. Several studies in the literature indicate that past changes in surface climate resulting from this conversion had a cooling effect owing to changes in vegetation morphology (increased albedo). In contrast, this study indicates that future land-cover change, likely to occur predominantly in the tropics and subtropics, has a warming effect governed by physiological rather than morphological mechanisms. The physiological mechanism is to reduce carbon assimilation and consequently latent relative to sensible heat flux resulting in surface temperature increases up to 2 °C and drier hydrologic conditions in locations where land cover was altered in the experiment. In addition, in contrast to an observed decrease in diurnal temperature range (DTR) over land expected with greenhouse warming, results here suggest that future land-cover conversion in tropics could increase the DTR resulting from decreased evaporative cooling during the daytime. For grid cells with altered land cover, the sensitivity of surface temperature to future anthropogenic land-cover change is generally within the range induced by decadal-scale interannual variability in vegetation density in temperate latitudes but up to 1.5 °C warmer in the tropics. [source] Tolerance of Pinus taeda and Pinus serotina to low salinity and flooding: Implications for equilibrium vegetation dynamicsJOURNAL OF VEGETATION SCIENCE, Issue 1 2008Benjamin Poulter Abstract Questions: 1. Do pine seedlings in estuarine environments display discrete or continuous ranges of physiological tolerance to flooding and salinity? 2. What is the tolerance of Pinus taeda and P. serotina to low salinity and varying hydrologic conditions? 3. Are the assumptions for ecological equilibrium met for modeling plant community migration in response to sea-level rise? Location: Albemarle Peninsula, North Carolina, USA. Methods: In situ observations were made to quantify natural pine regeneration and grass cover along a salinity stress gradient (from marsh, dying or dead forest, to healthy forest). A full-factorial greenhouse experiment was set up to investigate mortality and carbon allocation of Pinus taeda and P. serotina to low-salinity conditions and two hydrology treatments over 6 months. Treatments consisted of freshwater and two salinity levels (4 ppt and 8 ppt) under either permanently flooded or periodically flushed hydrologic conditions. Results: Natural pine regeneration was common (5,12 seedlings per m2) in moderate to well-drained soils where salinity concentrations were below ca. 3.5 ppt. Pine regeneration was generally absent in flooded soils, and cumulative mortality was 100% for 4 and 8 ppt salinity levels under flooded conditions in the greenhouse study. Under weekly flushing conditions, mortality was not significantly different between 0 and 4 ppt, confirming field observations. Biomass accumulation was higher for P. taeda, but for both pine species, the root to shoot ratio was suppressed under the 8 ppt drained treatment, reflecting increased below-ground stress. Conclusions: While Pinus taeda and P. serotina are commonly found in estuarine ecosystems, these species display a range of physiological tolerance to low-salinity conditions. Our results suggest that the rate of forest migration may lag relative to gradual sea-level rise and concomitant alterations in hydrology and salinity. Current bioclimate or landscape simulation models assume discrete thresholds in the range of plant tolerance to stress, especially in coastal environments, and consequently, they may overestimate the rate, extent, and timing of plant community response to sea-level rise. [source] |