Home About us Contact | |||
Hydrogen Storage Properties (hydrogen + storage_property)
Selected AbstractsImproved Hydrogen Storage Properties of Ti-Doped Sodium Alanate Using Titanium Nanoparticles as Doping Agents,ADVANCED MATERIALS, Issue 12 2003B. Bogdanovi By using nanosized doping agents, the properties of Ti-catalyzed NaAlH4 storage systems are considerably improved. Hydrogenation,dehydrogenation cyclic testing shows that with nanosized TiN dopants, storage capacities of 5 wt.-% H2 could be achieved. Doping with nanosized Ti brought hydrogenation times close to those required for practical applications, combined with high capacity (4.5 wt.-% H2, see Figure). [source] ChemInform Abstract: Calcium Amidoborane Ammoniate , Synthesis, Structure, and Hydrogen Storage Properties.CHEMINFORM, Issue 3 2010Yong Shen Chua Abstract ChemInform is a weekly Abstracting Service, delivering concise information at a glance that was extracted from about 100 leading journals. To access a ChemInform Abstract of an article which was published elsewhere, please select a "Full Text" option. The original article is trackable via the "References" option. [source] Hydrogen Storage Properties of New Ternary Alloys: PrMg2Ni9 and PrMgNi4.CHEMINFORM, Issue 35 2005X. Xu Abstract For Abstract see ChemInform Abstract in Full Text. [source] Strategies for the Improvement of the Hydrogen Storage Properties of Metal Hydride MaterialsCHEMPHYSCHEM, Issue 15 2008Hui Wu Abstract Metal hydrides are an important family of materials that can potentially be used for safe, efficient and reversible on-board hydrogen storage. Light-weight metal hydrides in particular have attracted intense interest due to their high hydrogen density. However, most of these hydrides have rather slow absorption kinetics, relatively high thermal stability, and/or problems with the reversibility of hydrogen absorption/desorption cycling. This paper discusses a number of different approaches for the improvement of the hydrogen storage properties of these materials, with emphasis on recent research on tuning the ionic mobility in mixed hydrides. This concept opens a promising pathway to accelerate hydrogenation kinetics, reduce the activation energy for hydrogen release, and minimize deleterious possible by-products often associated with complex hydride systems. [source] ChemInform Abstract: Reversible Hydrogen Storage Property and Structural Analysis for Face-Centered Cubic Hydride Mg0.82Zr0.18H2 Prepared by Gigapascal Hydrogen Pressure Method.CHEMINFORM, Issue 12 2008Tomoaki Takasaki Abstract ChemInform is a weekly Abstracting Service, delivering concise information at a glance that was extracted from about 200 leading journals. To access a ChemInform Abstract of an article which was published elsewhere, please select a "Full Text" option. The original article is trackable via the "References" option. [source] Hydrogen storage properties of B- and N-doped microporous carbonAICHE JOURNAL, Issue 7 2009Lifeng Wang Abstract A B- and N-doped microporous carbon has been synthesized via a substitution reaction. The obtained carbon exhibited much higher surface area than the previously reported B- and N-doped carbon. The hydrogen storage measurements indicated that the B- and N-doped microporous carbon had a 53% higher storage capacity than the carbon materials with similar surface areas. Furthermore, hydrogen storage via spillover was studied on Ru-supported B- and N-doped microporous carbon and a storage capacity of 1.2 wt % at 298 K and 10 MPa was obtained, showing an enhancement factor of 2.2. Ab initio molecular orbital calculations were also performed for the binding energies between the spiltover hydrogen atom and various sites on the doped carbon. The theoretical calculations can explain the experimental results well, which also shed light on the most favorable and possible sites with which the spiltover hydrogen atoms bind. © 2009 American Institute of Chemical Engineers AIChE J, 2009 [source] Studies on a New Material for Hydrogen Storage and Supply by Modified Fe and Fe2O3 PowderCHINESE JOURNAL OF CHEMISTRY, Issue 7 2007Hui Wang Abstract Modified iron oxide, a new material for hydrogen storage and supply to polymer electrolyte fuel cell (PEFC), was prepared by impregnating Fe or Fe2O3 powder with an aqueous solution containing metal cation additives (Al, Cr, Ni, Co, Zr and Mo). Hydrogen storage properties of the samples were investigated. The results show that both Fe and Fe2O3 powder with additive Mo presented excellent catalytic activity and cyclic stability, and their hydrogen producing temperature could be surprisingly decreased. The temperature of forming hydrogen for the Fe2O3 -Mo at the rate of 250 µmol·min,1·Fe-g,1 could be dramatically decreased from 527 °C before addition of Mo to 283 °C after addition of Mo in the fourth cycle. The cause for it was probably related to preventing the sinter of the sample particles. In addition, hydrogen storage capacity of the Fe2O3 -Mo can reach w=4.5% (72 kg H2/m3), close to International Energy Agency (IEA) criterion. These show the value of practical application of the Fe2O3 -Mo as the promising hydrogen storage material. [source] Nanoscale Grain Refinement and H-Sorption Properties of MgH2 Processed by High-Pressure Torsion and Other Mechanical Routes,ADVANCED ENGINEERING MATERIALS, Issue 8 2010Daniel Rodrigo Leiva MgH2 is a promising material for solid-state hydrogen storage due to its high gravimetric and volumetric storage capacity and its relatively low cost. Severe plastic deformation (SPD) processing techniques are being explored as an alternative to high-energy ball-milling (HEBM) in order to obtain more air resistant materials and reduce processing times. In this work, Mg, MgH2, and MgH2,Fe mixtures were severely mechanically processed by different techniques such as high-pressure torsion (HPT), extensive cold forging, and cold rolling. A very significant grain refinement was achieved when using MgH2 instead of Mg as raw material. The mean crystallite sizes observed ranged from 10 to 30,nm, depending on the processing conditions. Enhanced H-sorption properties were observed for the MgH2 -based nanocomposites processed by HPT when compared with MgH2 mixtures. Additionally, cold forging and cold rolling also proved effective in nanostructuring MgH2. These results suggest a high potential for innovative application with the use of low cost mechanical processing routes to produce Mg-based nanomaterials with attractive hydrogen storage properties. [source] Strategies for the Improvement of the Hydrogen Storage Properties of Metal Hydride MaterialsCHEMPHYSCHEM, Issue 15 2008Hui Wu Abstract Metal hydrides are an important family of materials that can potentially be used for safe, efficient and reversible on-board hydrogen storage. Light-weight metal hydrides in particular have attracted intense interest due to their high hydrogen density. However, most of these hydrides have rather slow absorption kinetics, relatively high thermal stability, and/or problems with the reversibility of hydrogen absorption/desorption cycling. This paper discusses a number of different approaches for the improvement of the hydrogen storage properties of these materials, with emphasis on recent research on tuning the ionic mobility in mixed hydrides. This concept opens a promising pathway to accelerate hydrogenation kinetics, reduce the activation energy for hydrogen release, and minimize deleterious possible by-products often associated with complex hydride systems. [source] |