Hydrogen Bridge (hydrogen + bridge)

Distribution by Scientific Domains


Selected Abstracts


Quantum mechanical study of the conformational behavior of proline and 4R-hydroxyproline dipeptide analogues in vacuum and in aqueous solution

JOURNAL OF COMPUTATIONAL CHEMISTRY, Issue 3 2002
Caterina Benzi
The conformational behavior of the title compounds has been investigated by Hartree,Fock, MP2, and DFT computations on the most significant structures related to variations of the backbone dihedral angles, cis/trans isomerism around the peptide bond, and diastereoisomeric puckering of the pyrrolidine ring. In vacuum the reversed , turn (,l), characterized by an intramolecular hydrogen bridge, corresponds to the absolute energy minimum for both puckerings (up and down) of the pyrrolidine ring. An additional energy minimum is found in the helix region, but only for an up puckering of the pyrrolidine ring. When solvent effects are included by means of the polarizable continuum model the conformer observed experimentally in condensed phases becomes the absolute minimum. The down puckering is always favored over its up counterpart, albeit by different amounts (0.4,0.5 kcal/mol for helical structures and about 2 kcal/mol for ,l structures). In helical structures cis arrangements of the peptide bond are only slightly less stable than their trans counterparts. This is no longer true for ,l structures, because the formation of an intramolecular hydrogen bond is possible only for trans peptide bonds. In most cases, proline and hydroxyproline show the same general trends; however, the electronegative 4(R) substituent of hydroxyproline leads to a strong preference for up puckerings irrespective of the backbone conformation. © 2002 Wiley Periodicals, Inc. J Comput Chem 23: 341,350, 2002 [source]


AIM and NBO analysis

MAGNETIC RESONANCE IN CHEMISTRY, Issue 9 2010

In the series of diaminoenones, large high-frequency shifts of the 1H NMR of the NH group in the cis -position relative to the carbonyl group suggests strong NH···O intramolecular hydrogen bonding comprising a six-membered chelate ring. The NH···O hydrogen bond causes an increase of the 1J(N,H) coupling constant by 2,4 Hz and high-frequency shift of the 15N signal by 9,10 ppm despite of the lengthening of the relevant NH bond. These experimental trends are substantiated by gauge-independent atomic orbital and density functional theory calculations of the shielding and coupling constants in the 3,3-bis(isopropylamino)-1-(aryl)prop-2-en-1-one (12) for conformations with the Z - and E -orientations of the carbonyl group relative to the NH group. The effects of the NH···O hydrogen-bond on the NMR parameters are analyzed with the atoms-in-molecules (AIM) and natural bond orbital (NBO) methods. The AIM method indicates a weakening of the NH···O hydrogen bond as compared with that of 1,1-di(pyrrol-2-yl)-2-formylethene (13) where NH···O hydrogen bridge establishes a seven-membered chelate ring, and the corresponding 1J(N,H) coupling constant decreases. The NBO method reveals that the LP(O) ,,*NH hyperconjugative interaction is weakened on going from the six-membered chelate ring to the seven-membered one due to a more bent hydrogen bond in the former case. A dominating effect of the NH bond rehybridization, owing to an electrostatic term in the hydrogen bonding, seems to provide an increase of the 1J(N,H) value as a consequence of the NH···O hydrogen bonding in the studied diaminoenones. Copyright © 2010 John Wiley & Sons, Ltd. [source]


Synthesis and Transition Metal Complexes of Novel N,N,O Scorpionate Ligands Suitable for Solid Phase Immobilisation

EUROPEAN JOURNAL OF INORGANIC CHEMISTRY, Issue 24 2006
Eike Hübner
Abstract Introduction of an allyl or a hydroxymethyl group to bis(3,5-dimethylpyrazol-1-yl)acetic acid (1) at the bridging carbon atom leads to the new tripodal N,N,O ligands 2,2-bis(3,5-dimethylpyrazol-1-yl)pent-4-enoic acid (Hbdmpzpen) (2) and 2,2-bis(3,5-dimethylpyrazol-1-yl)-3-hydroxypropionic acid (Hbdmpzhp) (3). These ligands exhibit similar chemical behaviour to that of 1, but they have the additional possibility to be immobilised to a solid phase. Esterification of the hydroxymethyl linker of 3 yields 2,2-bis(3,5-dimethylpyrazol-1-yl)-3-acetatopropionic acid (Hbdmpzap) (4). The molecular structures of 2, 3 and 4 all exhibit intramolecular hydrogen bridges. Introduction of a hydroxymethyl group to methyl bis(3,5-dimethylpyrazol-1-yl)acetate (5) yields methyl2,2-bis(3,5-dimethylpyrazol-1-yl)-3-hydroxypropionate(Mebdmpzhp) (6), which can be immobilised on Merrifield polymer to yield modified resin P - 6. To investigate the reactivity of these new ligands, manganese and rhenium complexes of 2, 3 and 4 have been studied. The molecular structures of the two manganese complexes [Mn(bdmpzpen)(CO)3] (7) and [Mn(bdmpzap)(CO)3] (8) have been confirmed by single-crystal X-ray structure determination. Saponification of polymer resin P - 6 and subsequent reaction with [ReBr(CO)5] yields rhenium tricarbonyl complexes anchored on Merrifield polymer (P -Re). Solid phase immobilisation of the [Mn(bdmpzpen)(CO)3] (7) and [Re(bdmpzpen)(CO)3] (9) complexes on 3-mercaptopropyl functionalised silica is initialised by AIBN. The tripodal coordination of manganese and rhenium in these functionalised Merrifield resins (P -Re) and silica (S -Mn, S -Re) is proven by a single A1 and two E signals in the IR spectra that are typical for unsymmetrical "piano stool" type carbonyl complexes. (© Wiley-VCH Verlag GmbH & Co. KGaA, 69451 Weinheim, Germany, 2006) [source]


Aminodiphenylphosphanes: Isotope-induced chemical shifts 1,14/15N(31P), coupling constants 1J(31P,15N), and chemical shifts ,15N and ,31P

HETEROATOM CHEMISTRY, Issue 6 2001
Rosalinda Contreras
A series of aminodiphenylphosphanes 1 [Ph2P-N(H)tBu (a), -NEt2 (b), -NiPr2 (c)], 2 [Ph2P-NHPh (a), -NH-2-pyridine (b), -NH-3-pyridine (c), -NH-4-pyridine (d), NH-pyrimidine (e), NH-2,6-Me2 -C6H3 (f), NH-3-Me-2-pyridine (g)], 3 [Ph2P-N(Me)Ph (a), -NPh2 (b)], and N-pyrrolyldiphenylphosphane 4 (Ph2P-NC4H4) was prepared and studied by NMR (1H, 13C, 31P, 15N NMR) spectroscopy. The isotope-induced chemical shifts 1,14/15N(31P) were determined at natural abundance of 15N by using HEED INEPT experiments. A dependence of 1,14/15N(31P) on the substituents at nitrogen was found (alkyl < H < aryl; increasingly negative values). The magnitude and sign of the coupling constants 1J(31P,15N) (positive sign) are dominated by the presence of the lone pair of electrons at the phosphorus atom. The X-ray structural analysis of 2b is reported, showing the presence of dimers owing to intermolecular hydrogen bridges in the solid state. © 2001 John Wiley & Sons, Inc. Heteroatom Chem 12:542,550, 2001 [source]