Home About us Contact | |||
Hydrodynamic Performance (hydrodynamic + performance)
Selected AbstractsNumerical prediction of the hydrodynamic performance of a centrifugal pump in cavitating flowsINTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN BIOMEDICAL ENGINEERING, Issue 5 2007Jun Li Abstract A computational modelling for the prediction of the hydrodynamic performance of a centrifugal pump in cavitating flows is presented in this paper. The cavitation model is implemented in a viscous Reynolds-averaged Navier,Stokes solver. The cavity interface and shape are determined using an iterative procedure matching the cavity surface to a constant pressure boundary. The pressure distribution, as well as its gradient on the wall, is taken into account in updating the cavity shape iteratively. Numerical validation of the present cavitation model and algorithms is performed on different headform/cylinder bodies for a range of cavitation numbers through comparing with the experimental data. Flow characteristics trends associated with off-design flow and twin cavities in the blade channel are observed using the presented cavitation prediction. The rapid drop in head coefficient at low cavitation number is captured for two different flow coefficients. Local flow field solution illustrates the principle physical mechanisms associated with the onset of breakdown. Copyright © 2006 John Wiley & Sons, Ltd. [source] Hydrodynamic considerations on optimal design of a three-phase airlift bioreactor with high solids loadingJOURNAL OF CHEMICAL TECHNOLOGY & BIOTECHNOLOGY, Issue 9 2003Jaroslav Klein Abstract The hydrodynamic study of a three-phase airlift (TPAL) bioreactor with an enlarged gas,liquid dual separator was carried out. Different lengths and diameters of the draft tube were tested to show how the design of the separator zone affects the hydrodynamic performance of the TPAL reactor. Ca-alginate beads with entrapped yeast biomass at different loadings (0, 7, 14 and 21% v/v) were used in order to mimic the solid phase of conventional high cell density systems, such as those with cells immobilized on carriers or flocculating cells. Important information on multiphase flow and distribution of gas and solid phases in the internal-loop airlift reactor (ALR) with high solids loading was obtained, which can be used for suggesting optimal hydrodynamic conditions in a TPAL bioreactor with high solids loading. It is finally suggested that the ALR with a dual separator and a downcomer to riser cross-sectional area ratio (AD/AR) ranging from 1.2 to 2.0 can be successfully applied to batch/continuous high cell density systems, where the uniform distribution of solid phase, its efficient separation of particles from the liquid phase, and an improved residence time of air bubbles inside the reactor are desirable. Copyright © 2003 Society of Chemical Industry [source] Morphological specializations of baleen whales associated with hydrodynamic performance and ecological nicheJOURNAL OF MORPHOLOGY, Issue 11 2006Becky L. Woodward Abstract Feeding behavior, prey type, and habitat appear to be associated with the morphological design of body, fluke, and flippers in baleen whales. Morphometric data from whaling records and recent stranding events were compiled, and morphometric parameters describing the body length, and fluke and flipper dimensions for an "average" blue whale Balaenoptera musculus, humpback whale Megaptera novaeangliae, gray whale Eschrichtius robustus, and right whale Eubalaena glacialis were determined. Body mass, body volume, body surface area, and fluke and flipper surface areas were estimated. The resultant morphological configurations lent themselves to the following classifications based on hydrodynamic principles: fast cruiser, slow cruiser, fast maneuverer, and slow maneuverer. Blue whales have highly streamlined bodies with small, high aspect ratio flippers and flukes for fast efficient cruising in the open ocean. On the other hand, the rotund right whale has large, high aspect ratio flukes for efficient slow speed cruising that is optimal for their continuous filter feeding technique. Humpbacks have large, high aspect ratio flippers and a large, low aspect ratio tail for quick acceleration and high-speed maneuvering which would help them catch their elusive prey, while gray whales have large, low aspect ratio flippers and flukes for enhanced low-speed maneuvering in complex coastal water habitats. J. Morphol., 2006. © 2006 Wiley-Liss, Inc. [source] Surface roughness effects on thermo-hydrodynamic lubrication of journal bearings lubricated with bubbly oilLUBRICATION SCIENCE, Issue 1 2006A. M. A. El-Butch In this paper, the combined effect of surface roughness and bubbles content on the hydrodynamic performance of journal bearings is studied. In the analysis, it is assumed that the bearing and shaft surfaces are covered with homogeneous isotropic roughness, the air bubbles are evenly distributed through the lubricant and the bubble size is very small. The modified Reynolds equation governing the pressure generation in the bearing gap for compressible fluid is solved simultaneously with the energy equation. Temperature and pressure distributions, coefficient of friction, bearing load capacity and attitude angle as affected by surface roughness, bubble content and some bearing parameters are presented. Results showed that the bearing load carrying capacity is higher at higher values of average roughness and higher bubble content as a direct consequence of the higher pressure values attained, and the average roughness and the bubbles content had no significant effect on the attitude angle. Copyright © 2006 John Wiley & Sons, Ltd. [source] Computational Fluid Dynamics Analysis of Blade Tip Clearances on Hemodynamic Performance and Blood Damage in a Centrifugal Ventricular Assist DeviceARTIFICIAL ORGANS, Issue 5 2010Jingchun Wu Abstract An important challenge facing the design of turbodynamic ventricular assist devices (VADs) intended for long-term support is the optimization of the flow path geometry to maximize hydraulic performance while minimizing shear-stress-induced hemolysis and thrombosis. For unshrouded centrifugal, mixed-flow and axial-flow blood pumps, the complex flow patterns within the blade tip clearance between the lengthwise upper surface of the rotating impeller blades and the stationary pump housing have a dramatic effect on both the hydrodynamic performance and the blood damage production. Detailed computational fluid dynamics (CFD) analyses were performed in this study to investigate such flow behavior in blade tip clearance region for a centrifugal blood pump representing a scaled-up version of a prototype pediatric VAD. Nominal flow conditions were analyzed at a flow rate of 2.5 L/min and rotor speed of 3000 rpm with three blade tip clearances of 50, 100, and 200 µm. CFD simulations predicted a decrease in the averaged tip leakage flow rate and an increase in pump head and axial thrust with decreasing blade tip clearances from 200 to 50 µm. The predicted hemolysis, however, exhibited a unimodal relationship, having a minimum at 100 µm compared to 50 µm and 200 µm. Experimental data corroborate these predictions. Detailed flow patterns observed in this study revealed interesting fluid dynamic features associated with the blade tip clearances, such as the generation and dissipation of tip leakage vortex and its interaction with the primary flow in the blade-blade passages. Quantitative calculations suggested the existence of an optimal blade tip clearance by which hydraulic efficiency can be maximized and hemolysis minimized. [source] Computational Design and In Vitro Characterization of an Integrated Maglev Pump-OxygenatorARTIFICIAL ORGANS, Issue 10 2009Juntao Zhang Abstract For the need for respiratory support for patients with acute or chronic lung diseases to be addressed, a novel integrated maglev pump-oxygenator (IMPO) is being developed as a respiratory assist device. IMPO was conceptualized to combine a magnetically levitated pump/rotor with uniquely configured hollow fiber membranes to create an assembly-free, ultracompact system. IMPO is a self-contained blood pump and oxygenator assembly to enable rapid deployment for patients requiring respiratory support or circulatory support. In this study, computational fluid dynamics (CFD) and computer-aided design were conducted to design and optimize the hemodynamics, gas transfer, and hemocompatibility performances of this novel device. In parallel, in vitro experiments including hydrodynamic, gas transfer, and hemolysis measurements were conducted to evaluate the performance of IMPO. Computational results from CFD analysis were compared with experimental data collected from in vitro evaluation of the IMPO. The CFD simulation demonstrated a well-behaved and streamlined flow field in the main components of this device. The results of hydrodynamic performance, oxygen transfer, and hemolysis predicted by computational simulation, along with the in vitro experimental data, indicate that this pump-lung device can provide the total respiratory need of an adult with lung failure, with a low hemolysis rate at the targeted operating condition. These detailed CFD designs and analyses can provide valuable guidance for further optimization of this IMPO for long-term use. [source] CFD-based multi-objective optimization method for ship designINTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN FLUIDS, Issue 5 2006Yusuke Tahara Abstract This paper concerns development and demonstration of a computational fluid dynamics (CFD)-based multi-objective optimization method for ship design. Three main components of the method, i.e. computer-aided design (CAD), CFD, and optimizer modules are functionally independent and replaceable. The CAD used in the present study is NAPA system, which is one of the leading CAD systems in ship design. The CFD method is FLOWPACK version 2004d, a Reynolds-averaged Navier,Stokes (RaNS) solver developed by the present authors. The CFD method is implemented into a self-propulsion simulator, where the RaNS solver is coupled with a propeller-performance program. In addition, a maneuvering simulation model is developed and applied to predict ship maneuverability performance. Two nonlinear optimization algorithms are used in the present study, i.e. the successive quadratic programming and the multi-objective genetic algorithm, while the former is mainly used to verify the results from the latter. For demonstration of the present method, a multi-objective optimization problem is formulated where ship propulsion and maneuverability performances are considered. That is, the aim is to simultaneously minimize opposite hydrodynamic performances in design tradeoff. In the following, an overview of the present method is given, and results are presented and discussed for tanker stern optimization problem including detailed verification work on the present numerical schemes. Copyright © 2006 John Wiley & Sons, Ltd. [source] |