Home About us Contact | |||
Hydrodynamic Models (hydrodynamic + models)
Selected AbstractsTowards an integrated GIS-based coastal forecast workflowCONCURRENCY AND COMPUTATION: PRACTICE & EXPERIENCE, Issue 14 2008Gabrielle Allen Abstract The SURA Coastal Ocean Observing and Prediction (SCOOP) program is using geographical information system (GIS) technologies to visualize and integrate distributed data sources from across the United States and Canada. Hydrodynamic models are run at different sites on a developing multi-institutional computational Grid. Some of these predictive simulations of storm surge and wind waves are triggered by tropical and subtropical cyclones in the Atlantic and the Gulf of Mexico. Model predictions and observational data need to be merged and visualized in a geospatial context for a variety of analyses and applications. A data archive at LSU aggregates the model outputs from multiple sources, and a data-driven workflow triggers remotely performed conversion of a subset of model predictions to georeferenced data sets, which are then delivered to a Web Map Service located at Texas A&M University. Other nodes in the distributed system aggregate the observational data. This paper describes the use of GIS within the SCOOP program for the 2005 hurricane season, along with details of the data-driven distributed dataflow and workflow, which results in geospatial products. We also focus on future plans related to the complimentary use of GIS and Grid technologies in the SCOOP program, through which we hope to provide a wider range of tools that can enhance the tools and capabilities of earth science research and hazard planning. Copyright © 2008 John Wiley & Sons, Ltd. [source] Advances in river ice hydrology 1999,2003HYDROLOGICAL PROCESSES, Issue 1 2005Brian Morse Abstract In the period 1999 to 2003, river ice has continued to have important socio-economic impacts in Canada and other Nordic countries. Concurrently, there have been many important advances in all areas of Canadian research into river ice engineering and hydrology. For example: (1) River ice processes were highlighted in two special journal issues (Canadian Journal of Civil Engineering in 2003 and Hydrological Processes in 2002) and at five conferences (Canadian Committee on River Ice Processes and the Environment in 1999, 2001 and 2003, and International Association of Hydraulic Research in 2000 and 2002). (2) A number of workers have clearly advanced our understanding of river ice processes by bringing together disparate information in comprehensive review articles. (3) There have been significant advances in river ice modelling. For example, both one-dimensional (e.g. RIVICE, RIVJAM, ICEJAM, HEC-RAS, etc.) and two-dimensional (2-D; www.river2d.ca) public-domain ice-jam models are now available. Work is ongoing to improve RIVER2D, and a commercial 2-D ice-process model is being developed. (4) The 1999,2003 period is notable for the number of distinctly hydrological and ecological studies. On the quantitative side, many are making efforts to determine streamflow during the winter period. On the ecological side, some new publications have addressed the link to water quality (temperature, dissolved oxygen, nutrients and pollutants), and others have dealt with sediment transport and geomorphology (particularly as it relates to break-up), stream ecology (plants, food cycle, etc.) and fish habitat. There is the growing recognition, that these types of study require collaborative efforts. In our view, the main areas requiring further work are: (1) to interface geomorphological and habitat models with quantitative river ice hydrodynamic models; (2) to develop a manager's toolbox (database management, remote sensing, forecasting, intervention methodologies, etc.) to enable agencies to intervene better at the time of ice-jam-induced floods; and (3) finalize ice-jam prevention methods on the St Lawrence River to safeguard its $2 billion commercial navigation industry. Copyright © 2005 John Wiley & Sons, Ltd. [source] Fluid dynamic simulation of O3 decomposition in a bubbling fluidized bedAICHE JOURNAL, Issue 11 2003Madhava Syamlal Recent advances in dense, multiphase, computational fluid dynamics (CFD) have allowed accurate simulation of the gas and particle motion in bubbling and circulating fluidized beds. Since fluidized-bed reactors are used for many chemical processes, a simulation must also be able to accurately couple chemical reactions to bed hydrodynamics. The catalytic decomposition of ozone (O3) often has been used to study experimentally the contacting behavior of catalytic reactors. Simulations of laboratory-scale experiments of premixed O3 decomposition in a bubbling fluidized bed using the multiphase CFD code MFIX were conducted. The grid-independent results are in very good agreement with reported experimental data on total conversion over a range of fluidization velocities and initial bed heights. This confirms the ability of multiphase hydrodynamic models to capture quantitatively the effect of hydrodynamics on chemical reactions in a bubbling fluidized bed. [source] Density gradients in Galactic planetary nebulaeMONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, Issue 1 2007J. P. Phillips ABSTRACT Certain hydrodynamic models of planetary nebulae (PNe) suggest that their shells possess appreciable radial density gradients. However, the observational evidence for such gradients is far from clear. On the one hand, Taylor et al. claim to find evidence for radio spectral indices 0.6 < , < 1.8, a trend which is taken to imply a variation ne,r,2 in most of their sample of PNe. On the other hand, Siódmiak & Tylenda find no evidence for any such variations in density; shell inhomogeneities, where they occur, are primarily attributable to ,blobs or condensations'. It will be suggested that both of these analyses are unreliable, and should be treated with a considerable degree of caution. A new analysis within the log(F(5 GHz)/F(1.4 GHz)),log(TB(5 GHz)) plane will be used to show that at least 10,20 per cent of PNe are associated with strong density gradients. We shall also show that the ratio F(5 GHz)/F(1.4 GHz) varies with nebular radius; an evolution that can be interpreted in terms of varying shell masses, and declining electron densities. [source] High-fidelity spectroscopy at the highest resolutionsASTRONOMISCHE NACHRICHTEN, Issue 5 2010D. Dravins Abstract High-fidelity spectroscopy presents challenges for both observations and in designing instruments. High-resolution and high-accuracy spectra are required for verifying hydrodynamic stellar atmospheres and for resolving intergalactic absorption-line structures in quasars. Even with great photon fluxes from large telescopes with matching spectrometers, precise measurements of line profiles and wavelength positions encounter various physical, observational, and instrumental limits. The analysis may be limited by astrophysical and telluric blends, lack of suitable lines, imprecise laboratory wavelengths, or instrumental imperfections. To some extent, such limits can be pushed by forming averages over many similar spectral lines, thus averaging away small random blends and wavelength errors. In situations where theoretical predictions of lineshapes and shifts can be accurately made (e.g., hydrodynamic models of solar-type stars), the consistency between noisy observations and theoretical predictions may be verified; however this is not feasible for, e.g., the complex of intergalactic metal lines in spectra of distant quasars, where the primary data must come from observations. To more fully resolve lineshapes and interpret wavelength shifts in stars and quasars alike, spectral resolutions on order R = 300 000 or more are required; a level that is becoming (but is not yet) available. A grand challenge remains to design efficient spectrometers with resolutions approaching R = 1 000 000 for the forthcoming generation of extremely large telescopes (© 2010 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim) [source] |