Home About us Contact | |||
Hydrodynamic Interactions (hydrodynamic + interaction)
Selected AbstractsFluid-particle drag in low-Reynolds-number polydisperse gas,solid suspensionsAICHE JOURNAL, Issue 6 2009Xiaolong Yin Abstract Lattice-Boltzmann simulations of low-Reynolds-number fluid flow in bidisperse fixed beds and suspensions with particle,particle relative motions have been performed. The particles are spherical and are intimately mixed. The total volume fraction of the suspension was varied between 0.1 and 0.4, the volume fraction ratio ,1/,2 from 1:1 to 1:6, and the particle size ratio d1/d2 from 1:1.5 to 1:4. A drag law with improved accuracy has been established for bidisperse fixed beds. For suspensions with particle,particle relative motions, the hydrodynamic particle,particle drag representing the momentum transfer between particle species through hydrodynamic interaction is found to be an important contribution to the net fluid-particle drag. It has a logarithmic dependence on the lubrication cutoff distance and can be fit as the harmonic mean of the drag forces in bidisperse fixed beds. The proposed drag laws for bidisperse fixed beds and suspensions are generalized to polydisperse suspensions with three or more particle species. © 2009 American Institute of Chemical Engineers AIChE J, 2009 [source] Hydrodynamic modeling of diffusion tensor properties of flexible moleculesJOURNAL OF COMPUTATIONAL CHEMISTRY, Issue 1 2009Vincenzo Barone Abstract We present a computationally efficient implementation of hydrodynamic modeling for the evaluation of diffusion tensors of molecules with internal degrees of freedom, adapted to take into account information from linear scaling computations of solvent accessible surfaces implemented in the framework of last generation continuum solvent models. Torsional angles are taken also explicitly into account, while retaining correct hydrodynamic interactions. A comparison with literature data is presented to prove the effectiveness of the approach for a wide range of molecular dimensions and solvent environments. © 2008 Wiley Periodicals, Inc. J Comput Chem, 2009 [source] Flow of particles suspended in a sheared viscous fluid: Effects of finite inertia and inelastic collisionsAICHE JOURNAL, Issue 10 2010Micheline Abbas Abstract We investigate in this article the macroscopic behavior of sheared suspensions of spherical particles. The effects of the fluid inertia, the Brownian diffusion, and the gravity are neglected. We highlight the influence of the solid-phase inertia on the macroscopic behavior of the suspension, considering moderate to high Stokes numbers. Typically, this study is concerned with solid particles O (100 ,m) suspended in a gas with a concentration varying from 5% to 30%. A hard-sphere collision model (with elastic or inelasic rebounds) coupled with the particle Lagrangian tracking is used to simulate the suspension dynamics in an unbounded periodic domain. We first consider the behavior of the suspension with perfect elastic collisions. The suspension properties reveal a strong dependence on the particle inertia and concentration. Increasing the Stokes number from 1 to 10 induces an enhancement of the particle agitation by three orders of magnitude and an evolution of the probability density function of the fluctuating velocity from a highly peaked (close to the Dirac function) to a Maxwellian shape. This sharp transition in the velocity distribution function is related to the time scale which controls the overall dynamics of the suspension flow. The particle relaxation (resp. collision) time scale dominates the particulate phase behavior in the weakly (resp. highly) agitated suspensions. The numerical results are compared with the prediction of two statistical models based on the kinetic theory for granular flows adapted to moderately inertial regimes. The suspensions have a Newtonian behavior when they are highly agitated similarly to rapid granular flows. However, the stress tensors are highly anisotropic in weakly agitated suspensions as a difference of normal stresses arises. Finally, we discuss the effect of energy dissipation due to inelastic collisions on the statistical quantities. We also tested the influence of a simple modeling of local hydrodynamic interactions during the collision by using a restitution coefficient which depends on the local impact velocities. © 2010 American Institute of Chemical Engineers AIChE J, 2010 [source] Viscometric properties of viscosity index improvers in lubricant base oil over a wide temperature range.LUBRICATION SCIENCE, Issue 2 2000Part I: Group II base oil Capillary viscometry has been employed to measure the viscosities of dilute polymer solutions over the temperature range -10 to 150 °C. A Group II base oil containing 95% saturates was used as solvent for an olefin copolymer (OCP), a hydrogenated diene copolymer (HDP), and a polymethacrylate (PMA). These three polymers represent the three major families of viscosity index (VI) improvers used nowadays in lubricant formulations. Intrinsic viscosities and Huggins' constants were also determined. The thickening effects of the olefin copolymer and the hydrogenated diene copolymer were found to be higher at low temperatures (e.g., 40 °C) than at higher ones (e.g., 100 °C), which phenomenon was attributed to stronger intermolecular hydrodynamic interactions at low temperatures, as indicated by the Huggins constants. For the hydrogenated diene copolymer and the polymethacrylate polymer, the viscosity increased abruptly when the temperature went below 10 °C. This unusual observation was attributed to the crystallisation of a small fraction of the base oil. Based on the intrinsic viscosity data, it was concluded that at temperatures between 10 and 150 °C, the polymer coil dimension remains a constant for the olefin copolymer and the hydrogenated diene copolymer VI improvers, but increases with increasing temperature for the polymethacrylate VI improver. [source] |