Hydrocarbon Accumulation (hydrocarbon + accumulation)

Distribution by Scientific Domains


Selected Abstracts


Control of Fades and Potential on Jurassic Hydrocarbon Accumulation and Prediction of Favorable Targets in the Hinterland Region of the Junggar Basin

ACTA GEOLOGICA SINICA (ENGLISH EDITION), Issue 5 2010
CHEN Dongxia
Abstract: Exploration practices show that the Jurassic System in the hinterland region of the Junggar Basin has a low degree of exploration but huge potential, however the oil/gas accumulation rule is very complicated, and it is difficult to predict hydrocarbon-bearing properties. The research indicates that the oil and gas is controlled by structure fades belt and sedimentary system distribution macroscopically, and hydrocarbon-bearing properties of sand bodies are controlled by lithofacies and petrophysical facies microscopically. Controlled by ancient and current tectonic frameworks, most of the discovered oil and gas are distributed in the delta front sedimentary system of a palaeo-tectonic belt and an ancient slope belt. Subaqueous branch channels and estuary dams mainly with medium and fine sandstone are the main reservoirs and oil production layers, and sand bodies of high porosity and high permeability have good hydrocarbon-bearing properties; the facies controlling effect shows a reservoir controlling geologic model of relatively high porosity and permeability. The hydrocarbon distribution is also controlled by relatively low potential energy at the high points of local structure macroscopically, while most of the successful wells are distributed at the high points of local structure, and the hydrocarbon-bearing property is good at the place of relatively low potential energy; the hydrocarbon distribution is in close connection with faults, and the reservoirs near the fault in the region of relatively low pressure have good oil and gas shows; the distribution of lithologic reservoirs at the depression slope is controlled by the distribution of sand bodies at positions of relatively high porosity and permeability. The formation of the reservoir of the Jurassic in the Junggar Basin shows characteristics of favorable facies and low-potential coupling control, and among the currently discovered reservoirs and industrial hydrocarbon production wells, more than 90% are developed within the scope of facies-potential index FPI>0.5, while the FPI and oil saturation of the discovered reservoir and unascertained traps have relatively good linear correlation. By establishing the relation model between hydrocarbon-bearing properties of traps and FPI, totally 43 favorable targets are predicted in four main target series of strata and mainly distributed in the Badaowan Formation and the Sangonghe Formation, and the most favorable targets include the north and east of the Shinan Sag, the middle and south of the Mobei Uplift, Cai-35 well area of the Cainan Oilfield, and North-74 well area of the Zhangbei fault-fold zone. [source]


Tectonic,Hydrocarbon Accumulation of Laoyemiao Region in the Nanpu Sag, Bohai Bay Basin

ACTA GEOLOGICA SINICA (ENGLISH EDITION), Issue 5 2009
Cuimei ZHANG
Abstract: This paper aims to gain insight into Laoyemiao (LYM) tectonic features and utilizes the tectonic,hydrocarbon accumulation model by integrated analysis tectonic controls on suitable reservoirs, trap styles, and hydrocarbon migration. On the basis of 3-D seismic data interpretation and the Xi'nanzhuang (XNZ) Fault geometry analysis, it has been assessed that the LYM tectonics is essentially a transverse anticline produced by flexure of the XNZ Fault surface and superimposed by Neocene north-east-trending strike-slip faults. Transverse anticline is found to exert controls both on major sediment transportation pathways and sedimentary facies distribution. Fan-delta plains that accumulated on the anticline crest near the XNZ Fault scrap and fan-delta front on the anticline front and the upper part of both limbs slumps on synclines and the Linque subsag. In combination with the reservoir properties, suitable reservoirs are predicted in the subfacies of subaqueous distributary channel and mouth bar deposited on the anticline crest. The LYM-faulted anticline accounts for the following trap groups: faulted-block and anticline-dominated trap, fault-dominated traps, and combined and stratigraphic traps. Evidence from biomarkers of crude oil and hydrocarbon-filling period simultaneous, or a little later to the strike-slip fault activity, reveal that the strike-slip faults penetrating into the deep source rock, by connecting with shallow reservoirs, provide the major hydrocarbon migration pathways. [source]


Late-stage Hydrocarbon Accumulation in the Bozhong Depression of the Bohai Bay Basin as Controlled by Neotectonism

ACTA GEOLOGICA SINICA (ENGLISH EDITION), Issue 3 2004
GONG Zaisheng
Abstract, Neotectonism occurred intensively in the Bozhong depression in the Bohai Bay Basin, which was reflected vertically by dramatic subsidence and a number of uplifts and laterally by notable fault movements. This particularity has resulted in the special petroleum geological conditions of the Bozhong depression which are different from those of adjacent lands. For example, the source rocks of the Shahejie Formation were overpressured and hydrocarbon generation occurred in the late stage; the Dongying Formation was deeply buried below the hydrocarbon-generating threshold, therefore there were sufficient oil sources. The rapid subsidence led to starved sedimentation of the Guantao Formation fine sandstone and the regional Minghuazhen Formation lacustrine shale, which formed the Neogene regional reservoir-caprock association. The active faults formed in the neotectonism became passages for oil to migrate from the Paleogene to Neogene. The traps formed by late fault activity and accompanied anticlines provided spaces for the formation of reservoirs. All the above factors match well with one another in the Bozhong depression, providing favorable conditions for the formation of a series of large oilfields in the region [source]


Characteristics of Overpressure Systems and Their Significance in Hydrocarbon Accumulation in the Yinggehai and Qiongdongnan Basins, China

ACTA GEOLOGICA SINICA (ENGLISH EDITION), Issue 2 2003
XIE Xinong
Abstract Overpressure systems are widely developed in the central depression and palco-uplift in the Yinggehai and Qiongdongnan basins. They can be divided into three types according to the origin of abnormally high formation pressure in the reservoirs, i.e. the autochthonous, vertically-transmitted and laterally-transmitted types. The autochthonous overpressure system results from rapid disequilibrium sediment loading and compaction. In the allochthonous overpressure system, the increase of fluid pressure in sandstone originates from the invasion of overpressured fluid flowing vertically or laterally through the conduit units. The autochthonous overpressure system occurs in the deep-lying strata of Neogene age in the central depression of the Yinggehai and Qiongdongnan basins. The vertically transmitted overpressure system is developed in the shallow strata of Late Miocene and Pliocene ages in the diapiric zone of the central Yinggehai basin, and the laterally transmitted overpressure system occurs in the Oligocene strata of paleo-uplifts, such as the structure of Ya-211 in the Qiongdongnan basin. The results indicate that the autochthonous overpressure system is generally a closed one, which is unfavorable for the migration and accumulation of hydrocarbons. In the allochthonous overpressure system, hydrocarbon accumulation depends on the relationship between the formation of overpressure systems and the spatial location and duration of hydrocarbon migration. The interval overlying the overpressure system is usually a favorable hydrocarbon accumulation zone if the duration of fluid expulsion coincides with that of hydrocarbon accumulation. [source]


Accelerating Oil and Gas Exploration in Western China by Studies of Formations of Hydrocarbon Accumulations in Superimposed Basins , A Preface

ACTA GEOLOGICA SINICA (ENGLISH EDITION), Issue 5 2010
PANG Xiongqi
No abstract is available for this article. [source]


Hydrocarbon accumulation by picocyanobacteria from the Arabian Gulf

JOURNAL OF APPLIED MICROBIOLOGY, Issue 3 2001
R.H. Al-Hasan
Aims:,The objective of this work was to study picocyanobacteria in the Arabian Gulf water in relation to oil pollution. Methods and Results:,Epifluorescent microscopic counting showed that offshore water samples along the Kuwaiti coast of the Arabian Gulf were rich in picocyanobacteria which ranged in numbers between about 1 × 105 and 6 × 105 ml,1. Most dominant was the genus Synechococcus; less dominant genera were Synechocystis, Pleurocapsa and Dermocarpella. All isolates grew well in an inorganic medium containing up to 0ˇ1% crude oil (w/v) and could survive in the presence of up to 1% crude oil. Hydrocarbon analysis by gas liquid chromatography (GLC) showed that representative strains of the four genera had the potential for the accumulation of hydrocarbons (the aliphatic n -hexadecane, aromatic phenanthrene and crude oil hydrocarbons) from aqueous media. Electron microscopy showed that the cells of these strains appeared to store hydrocarbons in their inter thylakoid spaces. Analysis by GLC of constituent fatty acids of total lipids and individual lipid classes from representative picoplankton strains grown in the absence and presence of hydrocarbons showed, however, that the fatty acid patterns were not markedly affected by the hydrocabon substrates, meaning that the test strains could not oxidize the accumulated hydrocarbons. Conclusions:,The Arabian Gulf is among the water bodies of the world richest in picocyanobacteria. These micro-organisms accumulate hydrocarbons from the water body, but do not biodegrade these compounds. It is assumed that hydrocarbon-utilizing bacteria that were always found associated with all picocyanobacteria in nature may carry out the biodegradation of these compounds. Significance and Importance of the Study:,The results shed light on the potential role of picocyanobacteria in controlling marine oil pollution. [source]


Oil and Gas Accumulation in the Foreland Basins, Central and Western China

ACTA GEOLOGICA SINICA (ENGLISH EDITION), Issue 2 2010
Yan SONG
Abstract: Foreland basin represents one of the most important hydrocarbon habitats in central and western China. To distinguish these foreland basins regionally, and according to the need of petroleum exploration and favorable exploration areas, the foreland basins in central and western China can be divided into three structural types: superimposed, retrogressive and reformative foreland basin (or thrust belt), each with distinctive petroleum system characteristics in their petroleum system components (such as the source rock, reservoir rock, caprock, time of oil and gas accumulation, the remolding of oil/gas reservoir after accumulation, and the favorable exploration area, etc.). The superimposed type foreland basins, as exemplified by the Kuqa Depression of the Tarim Basin, characterized by two stages of early and late foreland basin development, typically contain at least two hydrocarbon source beds, one deposited in the early foreland development and another in the later fault-trough lake stage. Hydrocarbon accumulations in this type of foreland basin often occur in multiple stages of the basin development, though most of the highly productive pools were formed during the late stage of hydrocarbon migration and entrapment (Himalayan period). This is in sharp contrast to the retrogressive foreland basins (only developing foreland basin during the Permian to Triassic) such as the western Sichuan Basin, where prolific hydrocarbon source rocks are associated with sediments deposited during the early stages of the foreland basin development. As a result, hydrocarbon accumulations in retrogressive foreland basins occur mainly in the early stage of basin evolution. The reformative foreland basins (only developing foreland basin during the Himalayan period) such as the northern Qaidam Basin, in contrast, contain organic-rich, lacustrine source rocks deposited only in fault-trough lake basins occurring prior to the reformative foreland development during the late Cenozoic, with hydrocarbon accumulations taking place relatively late (Himalayan period). Therefore, the ultimate hydrocarbon potentials in the three types of foreland basins are largely determined by the extent of spatial and temporal matching among the thrust belts, hydrocarbon source kitchens, and regional and local caprocks. [source]


Classification of Complex Reservoirs in Superimposed Basins of Western China

ACTA GEOLOGICA SINICA (ENGLISH EDITION), Issue 5 2010
PANG Xiongqi
Abstract: Many of the sedimentary basins in western China were formed through the superposition and compounding of at least two previously developed sedimentary basins and in general they can be termed as complex superimposed basins. The distinct differences between these basins and monotype basins are their discontinuous stratigraphic sedimentation, stratigraphic structure and stratigraphic stress-strain action over geological history. Based on the correlation of chronological age on structural sections, superimposed basins can be divided into five types in this study: (1) continuous sedimentation type superimposed basins, (2) middle and late stratigraphic superimposed basins, (3) early and late stratigraphic superimposed basins, (4) early and middle stratigraphic superimposed basins, and (5) long-term exposed superimposed basins. Multiple source-reservoir-caprock assemblages have developed in such basins. In addition, multi-stage hydrocarbon generation and expulsion, multiple sources, polycyclic hydrocarbon accumulation and multiple-type hydrocarbon reservoirs adjustment, reformation and destruction have occurred in these basins. The complex reservoirs that have been discovered widely in the superimposed basins to date have remarkably different geologic features from primary reservoirs, and the root causes of this are folding, denudation and the fracture effect caused by multiphase tectonic events in the superimposed basins as well as associated seepage, diffusion, spilling, oxidation, degradation and cracking. Based on their genesis characteristics, complex reservoirs are divided into five categories: (1) primary reservoirs, (2) trap adjustment type reservoirs, (3) component variant reservoirs, (4) phase conversion type reservoirs and (5) scale-reformed reservoirs. [source]


Alteration and Reformation of Hydrocarbon Reservoirs and Prediction of Remaining Potential Resources in Superimposed Basins

ACTA GEOLOGICA SINICA (ENGLISH EDITION), Issue 5 2010
PANG Hong
Abstract: Complex hydrocarbon reservoirs developed widely in the superimposed basins of China formed from multiple structural alterations, reformation and destruction of hydrocarbon reservoirs formed at early stages. They are characterized currently by trap adjustment, component variation, phase conversion, and scale reformation. This is significant for guiding current hydrocarbon exploration by revealing evolution mechanisms after hydrocarbon reservoir formation and for predicting remaining potential resources. Based on the analysis of a number of complex hydrocarbon reservoirs, there are four geologic features controlling the degree of destruction of hydrocarbon reservoirs formed at early stages: tectonic event intensity, frequency, time and caprock sealing for oil and gas during tectonic evolution. Research shows that the larger the tectonic event intensity, the more frequent the tectonic event, the later the last tectonic event, the weaker the caprock sealing for oil and gas, and the greater the volume of destroyed hydrocarbons in the early stages. Based on research on the main controlling factors of hydrocarbon reservoir destruction mechanisms, a geological model of tectonic superimposition and a mathematical model evaluating potential remaining complex hydrocarbon reservoirs have been established. The predication method and technical procedures were applied in the Tazhong area of Tarim Basin, where four stages of hydrocarbon accumulation and three stages of hydrocarbon alteration occurred. Geohistorical hydrocarbon accumulation reached 3.184 billion tons, of which 1.271 billion tons were destroyed. The total volume of remaining resources available for exploration is ,1.9 billion tons. [source]


Hydrocarbon Accumulation Conditions of Ordovician Carbonate in Tarim Basin

ACTA GEOLOGICA SINICA (ENGLISH EDITION), Issue 5 2010
LI Qiming
Abstract: Based on comprehensive analysis of reservoir-forming conditions, the diversity of reservoir and the difference of multistage hydrocarbon charge are the key factors for the carbonate hydrocarbon accumulation of the Ordovician in the Tarim Basin. Undergone four major deposition-tectonic cycles, the Ordovician carbonate formed a stable structural framework with huge uplifts, in which are developed reservoirs of the reef-bank type and unconformity type, and resulted in multistage hydrocarbon charge and accumulation during the Caledonian, Late Hercynian and Late Himalayan. With low matrix porosity and permeability of the Ordovician carbonate, the secondary solution pores and caverns serve as the main reservoir space. The polyphase tectonic movements formed unconformity reservoirs widely distributed around the paleo-uplifts; and the reef-bank reservoir is controlled by two kinds of sedimentary facies belts, namely the steep slope and gentle slope. The unconventional carbonate pool is characterized by extensive distribution, no obvious edge water or bottom water, complicated oil/gas/water relations and severe heterogeneity controlled by reservoirs. The low porosity and low permeability reservoir together with multi-period hydrocarbon accumulation resulted in the difference and complex of the distribution and production of oil/gas/water. The distribution of hydrocarbon is controlled by the temporal-spatial relation between revolution of source rocks and paleo-uplifts. The heterogenetic carbonate reservoir and late-stage gas charge are the main factors making the oil/ gas phase complicated. The slope areas of the paleo-uplifts formed in the Paleozoic are the main carbonate exploration directions based on comprehensive evaluation. The Ordovician of the northern slope of the Tazhong uplift, Lunnan and its periphery areas are practical exploration fields. The Yengimahalla-Hanikatam and Markit slopes are the important replacement targets for carbonate exploration. Gucheng, Tadong, the deep layers of Cambrian dolomite in the Lunnan and Tazhong-Bachu areas are favorable directions for research and risk exploration. [source]


Different Hydrocarbon Accumulation Histories in the Kelasu-Yiqikelike Structural Belt of the Kuqa Foreland Basin

ACTA GEOLOGICA SINICA (ENGLISH EDITION), Issue 5 2010
WANG Zhaoming
Abstract: The Kuqa foreland basin is an important petroliferous basin where gas predominates. The Kela-2 large natural gas reservoir and the Yinan-2, Dabei-1, Tuzi and Dina-11 gas reservoirs have been discovered in the basin up to the present. Natural gases in the Kelasu district and the Yinan district are generated from different source rocks indicated by methane and ethane carbon isotopes. The former is derived from both Jurassic and Triassic source rocks, while the latter is mainly from the Jurassic. Based on its multistage evolution and superposition and the intense tectonic transformation in the basin, the hydrocarbon charging history can be divided into the early and middle Himalayan hydrocarbon accumulation and the late Himalayan redistribution and re-enrichment. The heavier carbon isotope composition and the high natural gas ratio of C1/C1,4 indicate that the accumulated natural gas in the early Himalayan stage is destroyed and the present trapped natural gas was charged mainly in the middle and late Himalayan stages. Comparison and contrast of the oils produced in the Kelasu and Yinan regions indicate the hydrocarbon charging histories in the above two regions are complex and should be characterized by multistage hydrocarbon migration and accumulation. [source]


Origin of Paleofluids in Dabashan Foreland Thrust Belt: Geochemical Evidence of 13C, 18O and 87Sr/86Sr in Veins and Host Rocks

ACTA GEOLOGICA SINICA (ENGLISH EDITION), Issue 5 2010
ZENG Jianhui
Abstract: In the last ten years, with important discoveries from oil and gas exploration in the Dabashan foreland depression belt in the borderland between Shanxi and Sichuan provinces, the relationship between the formation and evolution of, and hydrocarbon accumulation in, this foreland thrust belt from the viewpoint of basin and oil and gas exploration has been studied. At the same time, there has been little research on the origin of fluids within the belt. Based on geochemical system analysis including Z values denoting salinity and research on ,13C, ,18O and 87Sr/86Sr isotopes in the host rocks and veins, the origin of paleofluids in the foreland thrust belt is considered. There are four principal kinds of paleofluid, including deep mantle-derived, sedimentary, mixed and meteoric. For the deep mantle-derived fluid, the ,13C is generally less than ,5.0,PDB, ,18O less than ,10.0,PDB, Z value less than 110 and 87Sr/86Sr less than 0.70600; the sedimentary fluid is mainly marine carbonate-derived, with the ,13C generally more than ,2.0,PDB, ,18O less than ,10.0,PDB, Z value more than 120 and 87Sr/86Sr ranging from 0.70800 to 0.71000; the mixed fluid consists mainly of marine carbonate fluid (including possibly a little mantle-derived fluid or meteoric water), with the ,13C generally ranging from ,2.0, to ,8.0,PDB, ,18O from ,10.0, to ,18.0, PDB, Z value from 105 to 120 and 87Sr/86Sr from 0.70800 to 0.71000; the atmospheric fluid consists mainly of meteoric water, with the ,13C generally ranging from 0.0, to ,10.0,PDB, ,18O less than ,8.0%cPDB, Z value less than 110 and 87Sr/86Sr more than 0.71000. The Chengkou fault belt encompasses the most complex origins, including all four types of paleofluid; the Zhenba and Pingba fault belts and stable areas contain a simple paleofluid mainly of sedimentary type; the Jimingsi fault belt contains mainly sedimentary and mixed fluids, both consisting of sedimentary fluid and meteoric water. Jurassic rocks of the foreland depression belt contain mainly meteoric fluid. [source]


Petroleum System of the Sufyan Depression at the Eastern Margin of a Huge Strike-slip Fault Zone in Central Africa

ACTA GEOLOGICA SINICA (ENGLISH EDITION), Issue 6 2009
ZHANG Yamin
Abstract: The present paper mainly studies the petroleum system of the Sufyan Depression in the Muglad Basin of central Africa and analyzes its control of hydrocarbon accumulation. On the basis of comprehensive analysis of effective source rock, reservoir bed types and source,reservoir,seal assemblages, petroleum system theory has been used to classify the petroleum system of the Sufyan Depression. Vertically, the Sufyan Depression consists of two subsystems. One is an Abu Gabra subsystem as a self generating, accumulating and sealing assemblage. The other subsystem is composed of an Abu Gabra source rock, Bentiu channel sandstone reservoir and Darfur group shale seal, which is a prolific assemblage in this area. Laterally, the Sufyan Depression is divided into eastern and western parts with separate hydrocarbon generation centers more than 10 000 m deep. The potential of the petroleum system is tremendous. Recently, there has been a great breakthrough in exploration. The Sufyan C-1 well drilled in the central structural belt obtained high-yielding oil flow exceeding 100 tons per day and controlled geologic reserves of tens of millions of tons. The total resource potential of the Sufyan Depression is considerable. The central structural belt is most favorable as an exploration and development prospect. [source]


Characteristics of Abnormal Pressure Systems and Their Responses of Fluid in Huatugou Oil Field, Qaidam Basin

ACTA GEOLOGICA SINICA (ENGLISH EDITION), Issue 5 2009
Xiaozhi CHEN
Abstract: Based on the comprehensive study of core samples, well testing data, and reservoir fluid properties, the construction and the distribution of the abnormal pressure systems of the Huatugou oil field in Qaidam Basin are discussed. The correlation between the pressure systems and hydrocarbon accumulation is addressed by analyzing the corresponding fluid characteristics. The results show that the Huatugou oil field as a whole has low formation pressure and low fluid energy; therefore, the hydrocarbons are hard to migrate, which facilitates the forming of primary reservoirs. The study reservoirs, located at the Xiayoushashan Formation (N21) and the Shangganchaigou Formation (N1) are relatively shallow and have medium porosity and low permeability. They are abnormal low-pressure reservoirs with an average formation pressure coefficient of 0.61 and 0.72 respectively. According to the pressure coefficient and geothermal anomaly, the N1 and N21 Formations belong to two independent temperature-pressure systems, and the former has slightly higher energy. The low-pressure compartments consist of a distal bar as the main body, prodelta mud as the top boundary, and shore and shallow lake mud or algal mound as the bottom boundary. They are vertically overlapped and horizontally paralleled. The formation water is abundant in the Cl, ion and can be categorized as CaCl2 type with high salinity, which indicates that the abnormal low-pressure compartments are in good sealing condition and beneficial for oil and gas accumulation and preservation. [source]


North-south Differentiation of the Hydrocarbon Accumulation Pattern of Carbonate Reservoirs in the Yingmaili Low Uplift, Tarim Basin, Northwest China

ACTA GEOLOGICA SINICA (ENGLISH EDITION), Issue 3 2008
Lü Xiuxiang
Abstract: By analyzing the characteristics of development, structural evolution and reservoir beds of the residual carbonate strata, this study shows that the residual carbonate strata in the Yingmaili low uplift are favorable oil and gas accumulation series in the Tabei (northern Tarim uplift) uplift. There are different patterns of hydrocarbon accumulation on the northern and southern slopes of the Yingmaili low uplift. The north-south differentiation of oil reservoirs were caused by different lithologies of the residual carbonate strata and the key constraints on the development of the reservoir beds. The Mesozoic terrestrial organic matter in the Kuqa depression and the Palaeozoic marine organic matter in the Manjiaer sag of the Northern depression are the major hydrocarbon source rocks for the northern slope and southern slope respectively. The hydrocarbon accumulation on the northern and southern slopes is controlled by differences in maturity and thermal evolution history of these two kinds of organic matter. On the southern slope, the oil accumulation formed in the early stage was destroyed completely, and the period from the late Hercynian to the Himalayian is the most important time for hydrocarbon accumulation. However, the time of hydrocarbon accumulation on the northern slope began 5 Ma B.P. Carbonate inner buried anticlines reservoirs are present on the southern slope, while weathered crust and paleo-buried hill karst carbonate reservoirs are present on the northern slope. The northern and southern slopes had different controlling factors of hydrocarbon accumulation respectively. Fracture growth in the reservoir beds is the most important controlling factor on the southern slope; while hydrocarbon accumulation on the northern slope is controlled by weathered crust and cap rock. [source]


Characteristics of Overpressure Systems and Their Significance in Hydrocarbon Accumulation in the Yinggehai and Qiongdongnan Basins, China

ACTA GEOLOGICA SINICA (ENGLISH EDITION), Issue 2 2003
XIE Xinong
Abstract Overpressure systems are widely developed in the central depression and palco-uplift in the Yinggehai and Qiongdongnan basins. They can be divided into three types according to the origin of abnormally high formation pressure in the reservoirs, i.e. the autochthonous, vertically-transmitted and laterally-transmitted types. The autochthonous overpressure system results from rapid disequilibrium sediment loading and compaction. In the allochthonous overpressure system, the increase of fluid pressure in sandstone originates from the invasion of overpressured fluid flowing vertically or laterally through the conduit units. The autochthonous overpressure system occurs in the deep-lying strata of Neogene age in the central depression of the Yinggehai and Qiongdongnan basins. The vertically transmitted overpressure system is developed in the shallow strata of Late Miocene and Pliocene ages in the diapiric zone of the central Yinggehai basin, and the laterally transmitted overpressure system occurs in the Oligocene strata of paleo-uplifts, such as the structure of Ya-211 in the Qiongdongnan basin. The results indicate that the autochthonous overpressure system is generally a closed one, which is unfavorable for the migration and accumulation of hydrocarbons. In the allochthonous overpressure system, hydrocarbon accumulation depends on the relationship between the formation of overpressure systems and the spatial location and duration of hydrocarbon migration. The interval overlying the overpressure system is usually a favorable hydrocarbon accumulation zone if the duration of fluid expulsion coincides with that of hydrocarbon accumulation. [source]


POTENTIAL STRUCTURAL TRAPS ASSOCIATED WITH LOWER CARBONIFEROUS SALT IN THE NORTHERN TARIM BASIN, NW CHINA

JOURNAL OF PETROLEUM GEOLOGY, Issue 1 2004
Jiangyu Zhou
In the Aixieke-Santamu area of the northern Tarim Basin (NW China), 45 relatively low amplitude structures related to the plastic flow of Lower Carboniferous salt have been discovered in the Lower Carboniferous Kalashayi Formation and the Middle-Upper Triassic Akekule and Halahatan Formations. Three small hydrocarbon accumulations have so far been located at the margins of a Lower Carboniferous salt body (measuring about 55km x 75km and 115,225m thick, controlled by wells and 2D and 3D seismic sections). In this paper, we consider the development of this salt body and discuss possible reasons why vertical diapirs are absent from the study area. We attempt to develop a model of salt flow and we investigate the relationship between salt flow and the occurrence of oil and gas traps. Using recently-acquired high-resolution 2D and 3D seismic profiles, we show that the Lower Carboniferous salt has undergone three separate phases of plastic flow. At the end of the Early Permian, the salt flowed southwards by 2.0,2.8 km; then, during the Late Triassic,Early Jurassic, it flowed in the same direction by 1.0,1.8 km; and finally at the end of the Tertiary, it flowed northwards by 0.6,1.5 km. These movements resulted in the formation of various types of structural trap in the Kalashayi, Akekule and Halahatan Formations including salt ridge anticlines, domes and marginal troughs. Salt ridge and salt edge low-amplitude anticlines are probably the most important targets for future hydrocarbon exploration. [source]


Oil and Gas Accumulation in the Foreland Basins, Central and Western China

ACTA GEOLOGICA SINICA (ENGLISH EDITION), Issue 2 2010
Yan SONG
Abstract: Foreland basin represents one of the most important hydrocarbon habitats in central and western China. To distinguish these foreland basins regionally, and according to the need of petroleum exploration and favorable exploration areas, the foreland basins in central and western China can be divided into three structural types: superimposed, retrogressive and reformative foreland basin (or thrust belt), each with distinctive petroleum system characteristics in their petroleum system components (such as the source rock, reservoir rock, caprock, time of oil and gas accumulation, the remolding of oil/gas reservoir after accumulation, and the favorable exploration area, etc.). The superimposed type foreland basins, as exemplified by the Kuqa Depression of the Tarim Basin, characterized by two stages of early and late foreland basin development, typically contain at least two hydrocarbon source beds, one deposited in the early foreland development and another in the later fault-trough lake stage. Hydrocarbon accumulations in this type of foreland basin often occur in multiple stages of the basin development, though most of the highly productive pools were formed during the late stage of hydrocarbon migration and entrapment (Himalayan period). This is in sharp contrast to the retrogressive foreland basins (only developing foreland basin during the Permian to Triassic) such as the western Sichuan Basin, where prolific hydrocarbon source rocks are associated with sediments deposited during the early stages of the foreland basin development. As a result, hydrocarbon accumulations in retrogressive foreland basins occur mainly in the early stage of basin evolution. The reformative foreland basins (only developing foreland basin during the Himalayan period) such as the northern Qaidam Basin, in contrast, contain organic-rich, lacustrine source rocks deposited only in fault-trough lake basins occurring prior to the reformative foreland development during the late Cenozoic, with hydrocarbon accumulations taking place relatively late (Himalayan period). Therefore, the ultimate hydrocarbon potentials in the three types of foreland basins are largely determined by the extent of spatial and temporal matching among the thrust belts, hydrocarbon source kitchens, and regional and local caprocks. [source]