Hydraulic Retention Time (hydraulic + retention_time)

Distribution by Scientific Domains


Selected Abstracts


Thermodynamic Analysis of Energy Transfer in Acidogenic Cultures

ENGINEERING IN LIFE SCIENCES (ELECTRONIC), Issue 5 2008
J.-R. Bastidas-Oyanedel
Abstract A global thermodynamic analysis, normally used for pure cultures, has been performed for steady-state data sets from acidogenic mixed cultures. This analysis is a combination of two different thermodynamic approaches, based on tabulated standard Gibbs energy of formation, global stoichiometry and medium compositions. It takes into account the energy transfer efficiency, ,, together with the Gibbs free energy dissipation, ,Go, analysis of the different data. The objective is to describe these systems thermodynamically without any heat measurement. The results show that , is influenced by environmental conditions, where increasing hydraulic retention time increases its value all cases. The pH effect on , is related to metabolic shifts and osmoregulation. Within the environmental conditions analyzed, , ranges from 0.23 for a hydraulic retention time of 20,h and pH,4, to 0.42 for a hydraulic retention time of 8,h and a pH ranging from 7,8.5. The estimated values of ,Go are comparable to standard Gibbs energy of dissipation reported in the literature. For the data sets analyzed, ,Go ranges from ,1210,kJ/molx, corresponding to a stirring velocity of 300,rpm, pH,6 and a hydraulic retention time of 6,h, to ,20744,kJ/molx for pH,4 and a hydraulic retention time of 20,h. For average conclusions, the combined approach based on standard Gibbs energy of formation and global stoichiometry, used in this thermodynamic analysis, allows for the estimation of Gibbs energy dissipation values from the extracellular medium compositions in acidogenic mixed cultures. Such estimated values are comparable to the standard Gibbs energy dissipation values reported in the literature. It is demonstrated that , is affected by the environmental conditions, i.e., stirring velocity, hydraulic retention time and pH. However, a relationship that relates this parameter to environmental conditions was not found and will be the focus of further research. [source]


Microbial Community Dynamics of a Continuous Mesophilic Anaerobic Biogas Digester Fed with Sugar Beet Silage

ENGINEERING IN LIFE SCIENCES (ELECTRONIC), Issue 4 2008
B. Demirel
Abstract The aim of the study was to investigate the long-term fermentation of an extremely sour substrate without any addition of manure. In the future, the limitation of manure and therefore the anaerobic digestion of silage with a very low buffering capacity will be an increasing general bottleneck for energy production from renewable biomass. During the mesophilic anaerobic digestion of sugar beet silage (without top and leaves) as the sole substrate (without any addition of manure), which had an extreme low pH of around 3.3, the highest specific gas production rate (spec. GPR) of 0.72,L/g volatile solids (VS),d was achieved at a hydraulic retention time (HRT) of 25,days compared to an organic loading rate (OLR) of 3.97,g VS/L,d at a pH of around 6.80. The methane (CH4) content of the digester ranged between 58 and 67,%, with an average of 63,%. The use of a new charge of substrate (a new harvest of the same substrate) with higher phosphate content improved the performance of the biogas digester significantly. The change of the substrate charge also seemed to affect the methanogenic population dynamics positively, thus improving the reactor performance. Using a new substrate charge, a further decrease in the HRT from 25 to 15,days did not influence the digester performance and did not seem to affect the structure of the methanogenic population significantly. However, a decrease in the HRT affected the size of the methanogenic population adversely. The lower spec. GPR of 0.54,L/g,VS,d attained on day,15 of the HRT could be attributed to a lower size of methanogenic population present in the anaerobic digester during this stage of the process. Furthermore, since sugar beet silage is a relatively poor substrate, in terms of the buffering capacity and the availability of nutrients, an external supply of buffering agents and nutrients is a prerequisite for a safe and stable digester operation. [source]


Acclimation Strategy of a Biohydrogen Producing Population in a Continuous-Flow Reactor with Carbohydrate Fermentation

ENGINEERING IN LIFE SCIENCES (ELECTRONIC), Issue 4 2006
Q. Ren
Abstract Poor startup of biological hydrogen production systems can cause an ineffective hydrogen production rate and poor biomass growth at a high hydraulic retention time (HRT), or cause a prolonged period of acclimation. In this paper a new startup strategy was developed in order to improve the enrichment of the hydrogen-producing population and the efficiency of hydrogen production. A continuously-stirred tank reactor (CSTR) and molasses were used to evaluate the hydrogen productivity of the sewage sludge microflora at a temperature of 35,°C. The experimental results indicated that the feed to microorganism ratio (F/M ratio) was a key parameter for the enrichment of hydrogen producing sludge in a continuous-flow reactor. When the initial biomass was inoculated with 6.24,g of volatile suspended solids (VSS)/L, an HRT of 6,h, an initial organic loading rate (OLR) of 7.0,kg chemical oxygen demand (COD)/(m3,×,d) and an feed to microorganism ratio (F/M) ratio of about 2,3,g COD/(g of volatile suspended solids (VSS) per day) were maintained during startup. Under these conditions, a hydrogen producing population at an equilibrium state could be established within 30,days. The main liquid fermentation products were acetate and ethanol. Biogas was composed of H2 and CO2. The hydrogen content in the biogas amounted to 47.5,%. The average hydrogen yield was 2.01,mol/mol hexose consumed. It was also observed that a special hydrogen producing population was formed when this startup strategy was used. It is supposed that the population may have had some special metabolic pathways to produce hydrogen along with ethanol as the main fermentation products. [source]


Biofilm Growth and Bed Fluidization in a Fluidized Bed Reactor Packed with Support Materials of Low Density,

ENGINEERING IN LIFE SCIENCES (ELECTRONIC), Issue 2 2004
R.A. Saucedo-Terán
Abstract Support materials of low-density for fluidized bed reactors provide several operational advantages, including lower energy requirements and proper biofilm growth balance. The aim of this investigation was to study the extent of biofilm growth and bed fluidization in an experimental reactor, using polyester resin (,pr,=,1220,kg/m3) and vitrified expanded perlite (,vep,=,1710,kg/m3) as alternative support materials to conventional silica sand. A noteworthy amount of biofilm was observed to be attached to both support materials from the very beginning of the bioreactor operation. Nevertheless, there were significant variations in biofilm growth and activity over the course of the experimental trials. For both perlite and polyester beds, the highest biofilm mass and the highest total number of mesophilic bacteria were observed between the 7th and the 10th day, showing a steady state trend at the end of the experimental runs. The chemical oxygen demand (COD) removal levels were concomitant with biofilm mass and total mesophilic bacteria changes, although the polyester bed efficiency was slightly higher than that for the perlite bed. As expected, the polyester bed was fluidized at a lower re-circulation flow compared to the perlite bed. Reactor back-washing was not required for these support materials since biomass excess was adequately separated by means of a special internal device. The efficiencies of removal of organic matter achieved were acceptable (up to 78,%) despite the low volume of the support material (25,%) and the low hydraulic retention time (30,min). [source]


Salt-water recycling for brine production at road-salt-storage facilities

ENVIRONMENTAL PROGRESS & SUSTAINABLE ENERGY, Issue 4 2009
G. Michael Fitch
Abstract This research investigates the storm-water quality at road-salt-storage facilities located at Virginia Department of Transportation (VDOT) winter maintenance locations and investigates the feasibility of a sustainable solution to better manage the salt-contaminated storm-water runoff. Collection ponds are currently used at most salt-storage sites to contain highly saline runoff and prevent its release into the environment. During a synoptic, winter-time sampling, chloride-ion concentrations in these ponds were found to be significantly greater than state and federal regulatory guidelines for surface-water-quality criteria, with individual values exceeding 2000 mg/L. The pond water is currently treated as a waste product by VDOT, resulting in significant costs for disposal. However, this saline pond water can potentially be recycled to produce concentrated brine solutions, which can then be used by VDOT for either prewetting dry salt during application to roadways or for direct brine application. Laboratory and field tests have been performed using a bench-scale brine generation system to quantify the effects of hydraulic retention time, temperature, and influent-water quality on system performance. Results of these studies have found that the storm-water runoff captured in collection ponds requires no pretreatment before entering the brine generation system and can effectively produce brine at the target salt concentration. Results of a cost-benefit analysis indicate that it is possible under multiple scenarios to recover the investment capital of implementing brine generation at all VDOT winter maintenance locations, typically within a 4-year horizon. © 2009 American Institute of Chemical Engineers Environ Prog, 2009 [source]


Long-term stability of biological denitrification process for high strength nitrate removal from wastewater of uranium industry

ENVIRONMENTAL PROGRESS & SUSTAINABLE ENERGY, Issue 3 2008
Prashant M. Biradar
Abstract The aim of the present study was to biologically denitrify uranium nitrate raffinate (UNR) from nuclear industry, which is a principle source of high strength nitrate waste. To denitrify the high nitrate waste, a pilot-scale continuous stirred tank reactor was designed with two inbuilt settlers. Acclimatization of mixed culture with synthetic waste was carried out prior to the inoculation of the acclimatized sludge into the reactor. Initial concentration of nitrate in uranium raffinate was 77,000 mg/L NO3. It was diluted and used as a feed to the reactor. Concentration of nitrate in feed was increased gradually from 10,000 mg/L NO3 to 40,000 mg/L NO3 with hydraulic retention time (HRT) maintained at 34.4 h. Complete denitrification of 40,000 mg/L NO3 was achieved in a specified HRT. To facilitate understanding of the treatablity and long-term stability of biological denitrification of UNR, study was carried out for 211 days by periodical perturbation of the system. Furthermore, to find the volume ratio of reactor to settler required for the full-scale design of the denitrification plant, settling of acclimatized sludge was carried out. © 2008 American Institute of Chemical Engineers Environ Prog, 2008 [source]


Lake responses to reduced nutrient loading , an analysis of contemporary long-term data from 35 case studies

FRESHWATER BIOLOGY, Issue 10 2005
ERIK JEPPESEN
Summary 1. This synthesis examines 35 long-term (5,35 years, mean: 16 years) lake re-oligotrophication studies. It covers lakes ranging from shallow (mean depth <5 m and/or polymictic) to deep (mean depth up to 177 m), oligotrophic to hypertrophic (summer mean total phosphorus concentration from 7.5 to 3500 ,g L,1 before loading reduction), subtropical to temperate (latitude: 28,65°), and lowland to upland (altitude: 0,481 m). Shallow north-temperate lakes were most abundant. 2. Reduction of external total phosphorus (TP) loading resulted in lower in-lake TP concentration, lower chlorophyll a (chl a) concentration and higher Secchi depth in most lakes. Internal loading delayed the recovery, but in most lakes a new equilibrium for TP was reached after 10,15 years, which was only marginally influenced by the hydraulic retention time of the lakes. With decreasing TP concentration, the concentration of soluble reactive phosphorus (SRP) also declined substantially. 3. Decreases (if any) in total nitrogen (TN) loading were lower than for TP in most lakes. As a result, the TN : TP ratio in lake water increased in 80% of the lakes. In lakes where the TN loading was reduced, the annual mean in-lake TN concentration responded rapidly. Concentrations largely followed predictions derived from an empirical model developed earlier for Danish lakes, which includes external TN loading, hydraulic retention time and mean depth as explanatory variables. 4. Phytoplankton clearly responded to reduced nutrient loading, mainly reflecting declining TP concentrations. Declines in phytoplankton biomass were accompanied by shifts in community structure. In deep lakes, chrysophytes and dinophytes assumed greater importance at the expense of cyanobacteria. Diatoms, cryptophytes and chrysophytes became more dominant in shallow lakes, while no significant change was seen for cyanobacteria. 5. The observed declines in phytoplankton biomass and chl a may have been further augmented by enhanced zooplankton grazing, as indicated by increases in the zooplankton : phytoplankton biomass ratio and declines in the chl a : TP ratio at a summer mean TP concentration of <100,150 ,g L,1. This effect was strongest in shallow lakes. This implies potentially higher rates of zooplankton grazing and may be ascribed to the observed large changes in fish community structure and biomass with decreasing TP contribution. In 82% of the lakes for which data on fish are available, fish biomass declined with TP. The percentage of piscivores increased in 80% of those lakes and often a shift occurred towards dominance by fish species characteristic of less eutrophic waters. 6. Data on macrophytes were available only for a small subsample of lakes. In several of those lakes, abundance, coverage, plant volume inhabited or depth distribution of submerged macrophytes increased during oligotrophication, but in others no changes were observed despite greater water clarity. 7. Recovery of lakes after nutrient loading reduction may be confounded by concomitant environmental changes such as global warming. However, effects of global change are likely to run counter to reductions in nutrient loading rather than reinforcing re-oligotrophication. [source]


Aerobic biodegradation of MtBE in an upflow fixed bed reactor

JOURNAL OF CHEMICAL TECHNOLOGY & BIOTECHNOLOGY, Issue 6 2009
Emma Bianchi
Abstract BACKGROUND: An aerobic upflow fixed bed reactor (UFBR) was densely colonized by a bacterial consortium, obtained from gasoline polluted waters, able to mineralize MtBE and BTEX. The system was studied in order to determine its capability to degrade the MtBE present in prepared solutions and in real contaminated aquifers and was operating for more than a year. RESULTS: Efficient colonization of the reactor took about 50 days, utilizing bacteria grown in continuous culture in a fermenter connected to the UFBR. During the study the influence of feed concentration of MtBE, temperature and hydraulic retention time (HRT) was analyzed. The system, running at 18 °C on synthetic medium, was fed at an influent MtBE concentration of 27.8 mg L,1 with HRT of 5 h showing 99.98% of MtBE degradation. When working with polluted groundwater, the system achieved 100% BTEX degradation and 99.34% MtBE degradation. CONCLUSION: The UFBR was tested on synthetic medium spiked with MtBE and on groundwater contaminated with MtBE and BTEX at concentrations of 50,60 ppm and a few ppm, respectively. The reactor responded efficiently showing great flexibility and capability of adjustment to different operating conditions with MtBE degradation of nearly 100%. Copyright © 2009 Society of Chemical Industry [source]


The beneficial role of intermediate clarification in a novel MBR based process for biological nitrogen and phosphorus removal

JOURNAL OF CHEMICAL TECHNOLOGY & BIOTECHNOLOGY, Issue 5 2009
MinGu Kim
Abstract BACKGROUND: A novel membrane bioreactor (MBR) is described, employing an intermediate clarifier. Unlike the established function of a final clarifier in a conventional biological nutrient removal system, the role of an intermediate clarifier has rarely been studied. Thus, this work focused on explaining the fate of nutrients in the intermediate clarifier, as influenced by the hydraulic retention time (HRT) of the preceding anaerobic bioreactor. RESULTS: The system was tested with two different anaerobic/anoxic/aerobic biomass fractions of 0.25/0.25/0.5 (run 1) and 0.15/0.35/0.45 (run 2) using synthetic wastewater. The major findings of the study were that phosphorus (P) removal was affected by the role of the intermediate clarifier. In run 1, P was removed at a rate 0.16 g d,1 in the intermediate clarifier while in run 2, additional P was released at 0.49 g d,1. The nitrogen (N) removal efficiencies were 74 and 75% for runs 1 and 2 respectively, while P removal was 91 and 96%. P uptake by denitrifying phosphate accumulating organisms (DPAOs) accounted for 41,52% of the total uptake in the MBR. CONCLUSIONS: This study found that the intermediate clarifier assisted chemical oxygen demand (COD), N, and P removal. With respect to the fate of P, the intermediate clarifier functioned as an extended anaerobic zone when the HRT of the preceding anaerobic zone was insufficient for P release, and as a pre-anoxic zone when the anaerobic HRT was adequate for P release. Copyright © 2008 Society of Chemical Industry [source]


Wastewater treatment for production of H2S-free biogas

JOURNAL OF CHEMICAL TECHNOLOGY & BIOTECHNOLOGY, Issue 8 2008
Sk Z Ahammad
Abstract BACKGROUND: In anaerobic wastewater treatment processes, the presence of sulfate-reducing bacteria (SRB) produces H2S. Many techniques are being used to remove H2S from biogas to obtain H2S-free biogas but none of those are cost effective or efficient enough to remove the H2S completely. The objective of the present study was to introduce some changes/modifications to the process parameters of the wastewater treatment operation to eliminate SRB from the system. RESULTS: The growth of SRB was found to be completely suppressed under thermophilic conditions (55 °C) but not at 37 °C. H2S-free biogas containing 56.5% methane was obtained at 55 °C after 180 days of treatment. The effect of higher concentrations of volatile fatty acids (VFAs) on the growth of SRB and methanogens at 37 °C and 55 °C were also studied. At higher VFA concentrations, SRB outgrew the methanogens at 37 °C but at 55 °C the situation was found to be reversed. For continuous operation at 55 °C and low dilution rate (0.0075 h,1), SRB was suppressed and biogas having 29% methane but free of H2S was obtained. CONCLUSION: Operating the reactor at high temperature (550C) and low hydraulic retention time (HRT) can result in the production of H2S-free biogas, with a high concentration of methane. Copyright © 2008 Society of Chemical Industry [source]


Influence of COD:N:P ratio on dark greywater treatment using a sequencing batch reactor

JOURNAL OF CHEMICAL TECHNOLOGY & BIOTECHNOLOGY, Issue 5 2008
Vijayaraghavan Krishnan
Abstract The recycling of greywater is an integral part of a water management system owing to the scarcity of fresh water resources. This article explores the effectiveness of an aerobic sequencing batch reactor in treating nutrient-deficit and nutrient-spiked dark greywater for agricultural reuse. The dark greywater in the present investigation had a COD:N:P ratio of 100:1.82:0.76, while the preferred ratio for biological oxidation is 100:5:1 (COD, chemical oxygen demand). The aerobic oxidation of nutrient-deficit and nutrient-spiked dark greywater with a COD:N:P ratio of 100:2.5:0.5; 100:3.5:0.75 and 100:5:1 resulted in outlet COD values of 64; 35; 15 and 12 mg L,1, with a corresponding BOD5 value of 37; 22; 10 and 8 mg L,1 at 36 h hydraulic retention time (HRT). Hence treatment of nutrient-added dark greywater at a COD:N:P ratio 100:3.5:0.75 and 100:5:1 for 36 h HRT complied with the Malaysian discharge standards for agricultural activities. Treated greywater has the potential for consideration as a resource, since it can be used as a supplement or replacement for potable water in landscape irrigation and other agricultural activities in rural and urban areas. Moreover, the level of greywater treatment is dictated by the final water quality requirement. Copyright © 2008 Society of Chemical Industry [source]


Long-term performance of co-metabolic degradation of trichloroethylene in a fluidized bed reactor fed with benzene, toluene and xylene

JOURNAL OF CHEMICAL TECHNOLOGY & BIOTECHNOLOGY, Issue 4 2008
Wei-Min Wu
Abstract BACKGROUND: Trichloroethylene (TCE) can be degraded under aerobic condition with toluene and other aromatic compounds. Inhibition by primary substrates and toxicity of TCE oxidation influence TCE degradation. RESULTS: Long-term co-metabolic degradation of TCE was evaluated using a laboratory-scale fluidized bed reactor (12 L) with granular activated carbon (1.57 kg) as media and activated sludge as inoculum. The reactor was fed with TCE and a mixture of benzene, toluene and xylene (BTX) and operated with one-pass (hydraulic retention time (HRT) of 5,6 min) for 6 months and then with recirculation (HRT of 20,30 min) for 18 months. BTX/TCE-degrading biofilm was developed within 1 month. TCE was effectively degraded with influent TCE concentrations from 48 to 280 µg L,1. BTX inhibited TCE degradation. Recirculation (or long HRT) increased TCE removal efficiency from 30% with one-pass to 90%. BTX/TCE load ratio influenced TCE removal efficiency and TCE/BTX removal ratio. TCE degradation fitted first-order kinetics. The biomass grown in the reactor also degraded cis -1,2-dichloroethylene (DCE), trans -1,2-DCE and vinyl chloride efficiently except for 1,1-DCE. CONCLUSION: Co-metabolic degradation of TCE by BTX-degrading biomass from activated sludge is sustainable in the long term. BTX/TCE load ratio is a key parameter for TCE removal performance. Copyright © 2008 Society of Chemical Industry [source]


Development of a correlation to study parameters affecting nitrification in a domestic wastewater treatment plant

JOURNAL OF CHEMICAL TECHNOLOGY & BIOTECHNOLOGY, Issue 3 2008
Gulnur Coskuner
Abstract BACKGROUND: Nitrification performance of an activated sludge reactor treating weak domestic wastewater was investigated for 11 months. Ammonia nitrogen removals were investigated as a function of wastewater composition and operational conditions. Backward elimination experimental design was used to determine the influence of the most important independent variables on NH3 -N removal efficiencies. Influent ammonia and biological oxygen demand (BOD5) concentrations, hydraulic retention time (HRT), mixed liquid suspended solids (MLSS), temperature, pH and dissolved oxygen (DO) concentration were considered as independent variables. This study aimed to find the most important parameters to describe nitrification performance. RESULTS: The presence of nitrification was confirmed by ammonia and nitrate variations throughout the reactor; ammonia oxidizing bacteria (AOB) populations were determined using a fluorescence in situ hybridization (FISH) method. MLSS concentration, influent BOD5 concentration and temperature were found to be the most influential factors on nitrification performance. The empirical correlation using multiple linear regressions was statistically significant and produced an adjusted coefficient of multiple determinations (R2adj) of 92.5%. CONCLUSION: Correlation provides a good understanding of the various parameters that affect the nitrification process, and could be extended to other case studies. Using these results, operators can apply proper operational strategies to maintain nitrification in wastewater treatment plants. Copyright © 2007 Society of Chemical Industry [source]


Performance assessment of a UASB,anoxic,oxic system for the treatment of tomato-processing wastes

JOURNAL OF CHEMICAL TECHNOLOGY & BIOTECHNOLOGY, Issue 6 2006
Alpesh Gohil
Abstract An upflow anaerobic sludge blanket (UASB),anoxic,oxic system was used to achieve biochemical oxygen demand, NH4 and total suspended solids (TSS) criteria of 15, 1 and 15 mg dm,3 at 1.17 days of system hydraulic retention time during treatment of tomato-processing waste. The incorporation of an anoxic tank was found to affect the improvement in sludge-settling characteristics, as reflected by about 25,33% reduction in the sludge volume index, along with final effluent TSS and soluble biochemical oxygen demand concentrations of 13 and 9 mg dm,3, respectively, which met the discharge criteria. Despite incomplete denitrification, sludge settleability was very good (sludge volume index < 60 cm3 g,1) owing to reduction in volatile suspended solids/TSS ratio from 0.75 to 0.6 as a result of higher alkalinity in the UASB effluent. Also in this study, phosphorus release was observed in the anoxic tank, predominantly due to abundance of acetic acid in the UASB effluent. A phosphate release of 5.4 mg P dm,3 was observed in the anoxic tank with subsequent P uptake in the following aerobic stage. Copyright © 2006 Society of Chemical Industry [source]


Membrane bioreactors vs conventional biological treatment of landfill leachate: a brief review

JOURNAL OF CHEMICAL TECHNOLOGY & BIOTECHNOLOGY, Issue 10 2004
Héctor Alvarez-Vazquez
Abstract A review of quality and biological treatment of landfill leachate is presented. Conventional ex-situ treatment normally demands multistage process treatment schemes, which may encompass both aerobic and anaerobic technologies alongside chemical precipitation and/or oxidation. This is to be contrasted with the more recent membrane bioreactor technology, which generally demands much reduced pre- and post-treatment and has a much reduced footprint compared with conventional biotreatment. Results are summarised in terms of the key determinant of COD removal for waters characterised in terms of BOD/COD ratio and age. Process operation is characterised with respect to COD strength and loading rate, hydraulic retention time and number of individual unit operations. Copyright © 2004 Society of Chemical Industry [source]


Effect of a chemical synthesis-based pharmaceutical wastewater on performance, acetoclastic methanogenic activity and microbial population in an upflow anaerobic filter

JOURNAL OF CHEMICAL TECHNOLOGY & BIOTECHNOLOGY, Issue 6 2002
B Kasapgil Ince
Abstract The performance of an upflow anaerobic filter (UAF) treating a chemical synthesis-based pharmaceutical wastewater was evaluated under various operating conditions. During start-up, the UAF was initially fed by glucose till an organic loading rate (OLR) of approximately 7.5,kg COD m,3 day,1 with a hydraulic retention time of 2.3 days. A soluble COD removal efficiency of 98% was achieved before the addition of the wastewater. Initially, the filter inertia was acclimatized to the wastewater by sequential feeding of 10% (w/v), 30% (w/v) and 70% (w/v) of the pre-aerated wastewater mixed with glucose followed by a 100% (w/v) pre-aerated wastewater. During the operation, the COD removal efficiency and methane yield decreased to 75% and 0.30,m3 CH4,kg,1 CODremoved respectively. As the UAF became accustomed to the pre-aerated wastewater, raw wastewater was fed in increasing ratios of 20% (w/v), 60% (w/v) and 80% (w/v) with the pre-aerated wastewater as the remaining part. During this stage of the operation, a COD removal efficiency in a range of 77,86% was achieved and the methane yield decreased to 0.24,m3 CH4,kg,1 CODremoved. Finally, 100% (w/v) raw wastewater was fed and a COD removal efficiency of 65% was achieved with a methane yield of 0.20,m3 CH4,kg,1 CODremoved. At the end of the operation, acetoclastic methanogenic activity was only measured in the bottom section of the UAF, this showed a 90% reduction in comparison with activity of inoculation sludge. Microscopic examinations revealed that rod-shaped methanogens remained as the dominant species whereas Methanosarcina -like species and filaments were present only in insignificant numbers along the UAF. © 2002 Society of Chemical Industry [source]


High-pressure systems for gas-phase free continuous incubation of enriched marine microbial communities performing anaerobic oxidation of methane

BIOTECHNOLOGY & BIOENGINEERING, Issue 3 2010
Christian Deusner
Abstract Novel high-pressure biotechnical systems that were developed and applied for the study of anaerobic oxidation of methane (AOM) are described. The systems, referred to as high-pressure continuous incubation system (HP-CI system) and high-pressure manifold-incubation system (HP-MI system), allow for batch, fed-batch, and continuous gas-phase free incubation at high concentrations of dissolved methane and were designed to meet specific demands for studying environmental regulation and kinetics as well as for enriching microbial biomass in long-term incubation. Anoxic medium is saturated with methane in the first technical stage, and the saturated medium is supplied for biomass incubation in the second stage. Methane can be provided in continuous operation up to 20,MPa and the incubation systems can be operated during constant supply of gas-enriched medium at a hydrostatic pressure up to 45,MPa. To validate the suitability of the high-pressure systems, we present data from continuous and fed-batch incubation of highly active samples prepared from microbial mats from the Black Sea collected at a water depth of 213,m. In continuous operation in the HP-CI system initial methane-dependent sulfide production was enhanced 10- to 15-fold after increasing the methane partial pressure from near ambient pressure of 0.2 to 10.0,MPa at a hydrostatic pressure of 16.0,MPa in the incubation stage. With a hydraulic retention time of 14,h a stable effluent sulfide concentration was reached within less than 3 days and a continuing increase of the volumetric AOM rate from 1.2 to 1.7,mmol,L,1,day,1 was observed over 14 days. In fed-batch incubation the AOM rate increased from 1.5 to 2.7 and 3.6,mmol,L,1,day,1 when the concentration of aqueous methane was stepwise increased from 5 to 15,mmol,L,1 and 45,mmol,L,1. A methane partial pressure of 6,MPa and a hydrostatic pressure of 12,MPa in manifold fed-batch incubation in the HP-MI system yielded a sixfold increase in the volumetric AOM rate. Over subsequent incubation periods AOM rates increased from 0.6 to 1.2,mmol,L,1,day,1 within 26 days of incubation. No inhibition of biomass activity was observed in all continuous and fed-batch incubation experiments. The organisms were able to tolerate high sulfide concentrations and extended starvation periods. Biotechnol. Bioeng. 2010; 105: 524,533. © 2009 Wiley Periodicals, Inc. [source]


Expression of merA, trxA, amoA, and hao in continuously cultured Nitrosomonas europaea cells exposed to cadmium sulfate additions

BIOTECHNOLOGY & BIOENGINEERING, Issue 5 2009
Tyler S. Radniecki
Abstract The effects of CdSO4 additions on the gene expressions of a mercury reductase, merA, an oxidative stress protein, trxA, the ammonia-monooxygenase enzyme (AMO), amoA, and the hydroxylamine oxidoreductase enzyme (HAO), hao, were examined in continuously cultured N. europaea cells. The reactor was fed 50,mM NH4+ and was operated for 78 days with a 6.9 days hydraulic retention time. Over this period, six successive batch additions of CdSO4 were made with increasing maximum concentrations ranging from 1 to 60,µM Cd2+. The expression of merA was highly correlated with the level of Cd2+ within the reactor (Rs,=,0.90) with significant up-regulation measured at non-inhibitory Cd2+ concentrations. Cd2+ appears to target AMO specifically at lower concentrations and caused oxidative stress at higher concentrations, as indicated by the SOURs (specific oxygen uptake rates) and the up-regulation of trxA. Since Cd2+ inhibition is irreversible and amoA was up-regulated in response to Cd2+ inhibition, it is hypothesized that de novo synthesis of the AMO enzyme occurred and was responsible for the observed recovery in activity. Continuously cultured N. europaea cells were more resistant to Cd2+ inhibition than previously examined batch cultured cells due to the presence of Mg2+ and Ca2+ in the growth media, suggesting that Cd2+ enters the cell through Mg2+ and Ca2+ import channels. The up-regulation of merA during exposure to non-inhibitory Cd2+ levels indicates that merA is an excellent early warning signal for Cd2+ inhibition. Biotechnol. Bioeng. 2009; 104: 1004,1011. © 2009 Wiley Periodicals, Inc. [source]


Application of a fuzzy logic control system for continuous anaerobic digestion of low buffered, acidic energy crops as mono-substrate

BIOTECHNOLOGY & BIOENGINEERING, Issue 3 2009
P. Scherer
Abstract A fuzzy logic control (FLC) system was developed at the Hamburg University of Applied Sciences (HAW Hamburg) for operation of biogas reactors running on energy crops. Three commercially available measuring parameters, namely pH, the methane (CH4) content, and the specific gas production rate (spec. GPR,=,m3/kg VS/day) were included. The objective was to avoid stabilization of pH with use of buffering supplements, like lime or manure. The developed FLC system can cover most of all applications, such as a careful start-up process and a gentle recovery strategy after a severe reactor failure, also enabling a process with a high organic loading rate (OLR) and a low hydraulic retention time (HRT), that is, a high throughput anaerobic digestion process with a stable pH and CH4 content. A precondition for a high load process was the concept of interval feeding, for example, with 8 h of interval. The FLC system was proved to be reliable during the long term fermentation studies over 3 years in one-stage, completely stirred tank reactors (CSTR) with acidic beet silage as mono-input (pH 3.3,3.4). During fermentation of the fodder beet silage (FBS), a stable HRT of 6.0 days with an OLR of up to 15 kg,VS/m3/day and a volumetric GPR of 9 m3/m3/day could be reached. The FLC enabled an automatic recovery of the digester after two induced severe reactor failures. In another attempt to prove the feasibility of the FLC, substrate FBS was changed to sugar beet silage (SBS), which had a substantially lower buffering capacity than that of the FBS. With SBS, the FLC accomplished a stable fermentation at a pH level between 6.5 and 6.6, and a volatile fatty acid level (VFA) below 500 mg/L, but the FLC had to interact and to change the substrate dosage permanently. In a further experiment, the reactor temperature was increased from 41 to 50°C. Concomitantly, the specific GPR, pH and CH4 dropped down. Finally, the FLC automatically enabled a complete recovery in 16 days. Biotechnol. Bioeng. 2009; 102: 736,748. © 2008 Wiley Periodicals, Inc. [source]


Expression of merA, amoA and hao in continuously cultured Nitrosomonas europaea cells exposed to zinc chloride additions

BIOTECHNOLOGY & BIOENGINEERING, Issue 2 2009
Tyler S. Radniecki
Abstract The effects of ZnCl2 additions on a mercuric reductase, merA, ammonia monooxygenase, amoA, and hydroxylamine (NH2OH) oxidoreductase, hao, gene expression were examined in continuously cultured Nitrosomonas europaea cells. The reactor was operated for 85 days with a 6.9 d hydraulic retention time and with four successive additions of ZnCl2 achieving maximum concentrations from 3 to 90 µM Zn2+. Continuously cultured N. europaea cells were more resistant to Zn2+ inhibition than previously examined batch cultured cells due to the presence of Mg2+ in the growth media, suggesting that Zn2+ enters the cell through Mg2+ import channels. The maximum merA up-regulation was 45-fold and expression increased with increases in Zn2+ concentration and decreased as Zn2+ concentrations decreased. Although Zn2+ irreversibly inactivated ammonia oxidation in N. europaea, the addition of either 600 µM CuSO4 or 2250 µM MgSO4 protected N. europaea from ZnCl2 inhibition, indicating a competition between Zn2+ and Cu2+/Mg2+ for uptake and/or AMO active sites. Since ZnCl2 inhibition is irreversible and amoA was up-regulated at 30 and 90 µM additions, it is hypothesized that de novo synthesis of the AMO enzyme is needed to overcome inhibition. The up-regulation of merA during exposure to non-inhibitory Zn2+ levels indicates that merA is an excellent early warning signal for Zn2+ inhibition. Biotechnol. Bioeng. 2009;102: 546,553. © 2008 Wiley Periodicals, Inc. [source]


Effects of process stability on anaerobic biodegradation of LAS in UASB reactors

BIOTECHNOLOGY & BIOENGINEERING, Issue 7 2005
Trine Løbner
Abstract Anaerobic biodegradation of linear alkylbenzene sulfonates (LAS) was studied in upflow anaerobic sludge blanket (UASB) reactors operated under mesophilic (37°C) and thermophilic (55°C) conditions. LAS C12 concentration in the influents was 10 mg·L,1, and the hydraulic retention time in the reactors was 2 days. Adsorption of LAS C12 was assessed in an autoclaved control reactor and ceased after 115 days. The reactors were operated for a minimum of 267 days; 40,80% removal of LAS C12 was observed. A temperature reduction from 55°C to 32°C for 30 h resulted in process imbalance as indicated by increase of volatile fatty acids (VFA). The imbalance was much more intense in the LAS amended reactor compared with an unamended reactor. At the same time, the process imbalance resulted in discontinued LAS removal. This finding indicates that process stability is a key factor in anaerobic biological removal of LAS. After a recovery period, the removal of LAS resumed, providing evidence of biological anaerobic LAS degradation. The removal remained constant until termination of experiments in the reactor. Biodegradation of LAS in the mesophilic reactor was at the same level as in the thermophilic reactor under stable conditions. ©2005 Wiley Periodicals, Inc. [source]


Development of a novel process for the biological conversion of H2S and methanethiol to elemental sulfur

BIOTECHNOLOGY & BIOENGINEERING, Issue 1 2003
Jan Sipma
Abstract The feasibility of anaerobic treatment of wastewater containing methanethiol (MT), an extremely volatile and malodorous sulfur compound, was investigated in lab-scale bioreactors. Inoculum biomass originating from full-scale anaerobic wastewater treatment facilities was used. Several sludges, tested for their ability to degrade MT, revealed the presence of organisms capable of metabolizing MT as their sole source of energy. Furthermore, batch tests were executed to gain a better understanding of the inhibition potential of MT. It was found that increasing MT concentrations affected acetotrophic organisms more dramatically than methylotrophic organisms. Continuous reactor experiments, using two lab-scale upflow anaerobic sludge bed (UASB) reactors (R1 and R2), aimed to determine the maximal MT load and the effect of elevated sulfide concentrations on MT conversion. Both reactors were operated at a hydraulic retention time (HRT) of about 7 hours, a temperature of 30°C, and a pH of between 7.3 and 7.6. At the highest influent MT concentration applied, 14 mM in R1, corresponding to a volumetric loading rate of about 50 mM MT per day, 87% of the organic sulfur was recovered as hydrogen sulfide (12.2 mM) and the remainder as volatile organic sulfur compounds (VOSCs). Upon decreasing the HRT to 3.5 to 4.0 h at a constant MT loading rate, the sulfide concentration in the reactor decreased to 8 mM and MT conversion efficiency increased to values near 100%. MT conversion was apparently inhibited by the high sulfide concentrations in the reactor. The specific MT degradation rate, as determined after 120 days of operation in R1, was 2.83 ± 0.27 mmol MT g VSS,1 day,1. During biological desulfurization of liquid hydrocarbon phases, such as with liquefied petroleum gas (LPG), the combined removal of hydrogen sulfide and MT is desired. In R2, the simultaneous addition of sodium sulfide and MT was therefore studied and the effect of elevated sulfide concentrations was investigated. The addition of sodium sulfide resulted in enhanced disintegration of sludge granules, causing significant washout of biomass. Additional acetate, added to stimulate growth of methanogenic bacteria to promote granulation, was hardly converted at the termination of the experimental period. © 2003 Wiley Periodicals, Inc. Biotechnol Bioeng 82: 1,11, 2003. [source]


Modeling and Biokinetics in Anaerobic Acidogenesis of Starch-Processing Wastewater to Acetic Acid

BIOTECHNOLOGY PROGRESS, Issue 2 2004
Johng-Hwa Ahn
Starch-processing wastewater was anaerobically treated to produce acetic acid in laboratory-scale, continuously stirred tank reactors. The optimal conditions, in which the maximum acetic acid production occurred, were 0.56 d hydraulic retention time, pH 5.9, and 36.1 °C. Acetic acid production at the optimum conditions was 672 ± 20 mg total organic carbonequivalent L,1, which indicated a 75% conversion efficiency of influent total organic carbon into acetic acid. A fourth order Runge-Kutta approximation was used to determine the Monod kinetics of the acidogens by using unsteady-state data from continuous unsteady-state experiments at the optimum conditions. The model outputs and experimental data fit together satisfactorily, suggesting that the unsteady-state approach was appropriate for the evaluation of acidogenic biokinetics. These included ,m, Ks, Y, and kd, which were evaluated as being 0.13 h,1, 25 mg total carbohydrate (TC) L,1, 0.38 mg volatile suspended solid mg,1 TC, and 0.002 h,1, respectively. [source]


Experimental Study and Design of a Submerged Membrane Distillation Bioreactor

CHEMICAL ENGINEERING & TECHNOLOGY (CET), Issue 1 2009
J. Phattaranawik
Abstract A hybrid process incorporating membrane distillation in a submerged membrane bioreactor operated at elevated temperature is developed and experimentally demonstrated in this article. Since organic particles are rejected by an ,evaporation' mechanism, the retention time of non-volatile soluble and small organics in the submerged membrane distillation bioreactor (MDBR) is independent of the hydraulic retention time (mainly water and volatiles). A high permeate quality can be obtained in the one-step compact process. The submerged MD modules were designed for both flat-sheet membranes and tubular membrane configurations. The process performance was preliminarily evaluated by the permeate flux stabilities. The module configuration design and air sparging used in the MDBR process were tested. Flux declines were observed for the thin flat-sheet hydrophobic membranes. Tubular membrane modules provided more stable permeate fluxes probably due to the turbulent condition generated from air sparging injected inside the tubular membrane bundles. The experiments with the submerged tubular MD module gave stable fluxes of approximately 5,L/m2 h over 2,weeks at a bioreactor temperature of 56,°C. The total organic carbon in the permeate was consistently lower than 0.7,mg/L for all experiments. [source]


Numerical Modeling of Unsaturated Flow in Wastewater Soil Absorption Systems

GROUND WATER MONITORING & REMEDIATION, Issue 2 2003
Deborah N. Huntzinger Beach
It is common practice in the United States to use wastewater soil absorption systems (WSAS) to treat domestic wastewater. WSAS are expected to provide efficient, long-term removal of wastewater contaminants prior to ground water recharge. Soil clogging at the infiltrative surface of WSAS occurs due to the accumulation of suspended solids, organic matter, and chemical precipitates during continued wastewater infiltration. This clogging zone (CZ) creates an impedance to flow, restricting the hydraulic conductivity and rate of infiltration. A certain degree of clogging may improve the treatment of wastewater by enhancing purification processes, in part because unsaturated flow is induced and residence times are significantly increased. However, if clogging becomes excessive, the wastewater pond height at the infiltrative surface can rise to a level where system failure occurs. The numerical model HYDRUS-2D is used to simulate unsaturated flow within WSAS to better understand the effect of CZs on unsaturated flow behavior and hydraulic retention times in sandy and silty soil. The simulations indicate that sand-based WSAS with mature CZs are characterized by a more widely distributed flow regime and longer hydraulic retention times. The impact of clogging on water flow within the silt is not as substantial. For sand, increasing the hydraulic resistance of the CZ by a factor of three to four requires an increase in the pond height by as much as a factor of five to achieve the same wastewater loading. Because the degree of CZ resistance directly influences the pond height within a system, understanding the influence of the CZ on flow regimes in WSAS is critical in optimizing system design to achieve the desired pollutant-treatment efficiency and to prolong system life. [source]


Simulating short-circuiting flow in a constructed wetland: the implications of bathymetry and vegetation effects

HYDROLOGICAL PROCESSES, Issue 6 2009
Joong-Hyuk Min
Abstract Short-circuiting flow, commonly experienced in many constructed wetlands, reduces hydraulic retention times in unit wetland cells and decreases the treatment efficiency. A two-dimensional (2-D), physically based, distributed modelling approach was used to systematically address the effects of bathymetry and vegetation on short-circuiting flow, which previously have been neglected or lumped in one-dimensional wetland flow models. In this study, a 2-D transient hydrodynamics with advection-dispersion model was developed using MIKE 21 and calibrated with bromide tracer data collected at the Orlando Easterly Wetland Cell 7. The estimated topographic difference between short-circuiting flow zone and adjacent area ranged from 0·3 to 0·8 m. A range of the Manning roughness coefficient at the short-circuiting flow zone was estimated (0·022,0·045 s m,1/3). Sensitivity analysis of topographical and vegetative heterogeneity deduced during model calibration shows that relic ditches or other ditch-shaped landforms and the associated sparse vegetation along the main flow direction intensify the short-circuiting pattern, considerably affecting 2-D solute transport simulation. In terms of hydraulic efficiency, this study indicates that the bathymetry effect on short-circuiting flow is more important than the vegetation effect. Copyright © 2009 John Wiley & Sons, Ltd. [source]


Utilization of common ditch vegetation in the reduction of fipronil and its sulfone metabolite

PEST MANAGEMENT SCIENCE (FORMERLY: PESTICIDE SCIENCE), Issue 12 2008
Robert Kröger
Abstract BACKGROUND: Fipronil, a phenylpyrazole insecticide, and its oxidative sulfone metabolite are two potential pollutants from treated rice and cotton production. A consequence of these pollutants occurring in surface runoff is degradation of downstream aquatic ecosystems. Utilization of primary intercept drainage ditches as management practices to reduce fipronil concentrations and loads has not been examined. This study used ditch mesocosms planted with monospecific stands of common emergent wetland vegetation to determine if certain plant species were more proficient in fipronil mitigation. RESULTS: Three replicates of four plant species were compared against a non-vegetated control to determine differences in water column outflow concentrations (µg L,1) and loads (µg). There were no significant differences between vegetated and control treatments in outflow concentrations (F = 0.35, P = 0.836) and loads (F = 0.35, P = 0.836). The range of fipronil reduction was 28,45% for both concentration and load. Unlike fipronil, fipronil sulfone concentrations and load increased by 96,328%. CONCLUSION: The increase in fipronil sulfone was hypothesized as a direct consequence of oxidation of fipronil within each mesocosm. The type of ditch vegetation had no effect on fipronil reduction. Future research needs to examine initial concentrations and hydraulic retention times to examine potential changes in reduction capacities. Copyright © 2008 Society of Chemical Industry [source]


Improvement in biomass characteristics and degradation efficiency in modified UASB reactor treating municipal sewage: a comparative study with UASB reactor

ASIA-PACIFIC JOURNAL OF CHEMICAL ENGINEERING, Issue 5 2009
Suprotim Das
Abstract Low strength wastewaters (LSWs) are difficult to degrade efficiently in the upflow anaerobic sludge blanket (UASB) reactor. The possible reasons for poor treatment of LSWs in UASB are: (i) low mixing due to low biogas production (ii) frequent biomass washout at higher hydraulic loading rate due to low settleability of biomass. In the present study, lab scale UASB reactor and modified upflow anaerobic sludge blanket (MUASB) reactor were operated with municipal sewage containing chemical oxygen demand (COD) in range of 180,210 mg L,1 as LSW at three different hydraulic retention times (HRTs) of 8, 6, and 4 h. The changes in the biomass characteristics as well as degradation efficiency were compared with respect to time. During this operation, samples of biomass were taken from both reactors to measure total suspended solids (TSS), settling velocity, granular size and specific methanogenic activity (SMA). The overall COD removal in MUASB reactor was higher compared to UASB (84 and 67% respectively). After 150 days of operation, the settling velocity and SMA of MUASB biomass increased, but no significant change in settling velocity and SMA of UASB biomass was observed. The study shows that MUASB could be preferred over UASB for the treatment of municipal sewage as LSW. Copyright © 2009 Curtin University of Technology and John Wiley & Sons, Ltd. [source]


Biological treatment of milk processing wastewater in a sequencing batch flexible fibre biofilm reactor

ASIA-PACIFIC JOURNAL OF CHEMICAL ENGINEERING, Issue 5 2009
Mohamed Abdulgader
Abstract Biological treatment of dairy wastewater was investigated using a laboratory scale aerobic sequencing batch flexible fibre biofilm reactor (SBFFBR). The SBFFBR system was modified from a typical sequencing batch reactor system by using eight flexible fibre bundles with a very high specific surface area, which served as support for microorganisms. The reactor was operated under different influent chemical oxygen demand (COD) concentrations (610, 2041 and 4382 mg l,1) and constant hydraulic retention times of 1.6 days. The results have shown successful applicability of the SBFFBR system to treat this dairy wastewater. High COD removal efficiencies between 89.7 and 97% were achieved at average organic loading rates of 0.4 and 2.74 kg COD m,3 d,1, respectively. Copyright © 2009 Curtin University of Technology and John Wiley & Sons, Ltd. [source]


Continuous fermentative hydrogen production from a wheat starch co-product by mixed microflora

BIOTECHNOLOGY & BIOENGINEERING, Issue 6 2003
I. Hussy
Abstract For the transition to the hydrogen economy, hydrogen must be produced sustainably, e.g., by the fermentation of agricultural material. Continuous fermentative production of hydrogen from an insoluble substrate in nonsterile conditions is yet to be reported. In this study hydrogen production using mixed microflora from heat-treated digested sewage sludge in nonsterile conditions from a particulate co-product of the wheat flour industry (7.5 g L,1 total hexose) at 18- and 12-hour hydraulic retention times, pH 4.5 and 5.2, 30°C and 35°C was examined. In continuous operation, hydrogen yields of approximately 1.3 moles hydrogen/mole hexose consumed were obtained, but decreased if acetate or propionate levels rose, indicating metabolism shifted towards hydrogen consumption by homoacetogenesis or propionate producers. These shifts occurred both at pH 4.5 and 5.2. Sparging the reactor with nitrogen to reduce hydrogen in the off-gas from 50% to 7% gave stable operation with a hydrogen yield of 1.9 moles hydrogen /mole hexose consumed over an 18-day period. © 2003 Wiley Periodicals, Inc. Biotechnol Bioeng84: 619,626, 2003. [source]